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Supplementary material to the paper “Template
Matching via Densities on the Roto-Translation

Group”
Erik J. Bekkers, Marco Loog, Bart M. ter Haar Romeny, and Remco Duits

F

1 PROBABILISTIC INTERPRETATION OF THE
SMOOTHING PRIOR IN SE(2)

In this section we relate the SE(2) smoothing prior to
time resolvent hypo-elliptic1 diffusion processes on SE(2).
First we aim to familiarize the reader with the concept of
resolvent diffusions on R2 in Subsec. 1.1. Then we pose in
Subsec. 1.2 a new problem (the single patch problem), which
is a special case of our SE(2) linear regression problem, that
we use to link the left-invariant regularizer to tue resolvents
of hypo-elliptic diffusions on SE(2).

1.1 Resolvent Diffusion Processes
A classic approach to noise suppression in images is via
diffusion regularizations with PDE’s of the form [3]{

∂
∂τ u = ∆u,
u|τ=0 = u0,

(1)

where ∆ denotes the Laplace operator. Solving (1) for any
diffusion time τ > 0 gives a smoothed version of the input
u0. The time-resolvent process of the PDE is defined by the
Laplace transform with respect to τ ; time τ is integrated
out using a memoryless negative exponential distribution
P (T = τ) = αe−ατ . Then, the time integrated solutions

t(x) = α

∫ ∞
0

u(x, τ)e−ατdτ,

with decay parameter α, are in fact the solutions

t = argmin
t∈L2(R2)

[
‖t− t0‖2L2(R2) + λ

∫
R2

‖∇t(x̃)‖2 dx̃

]
, (2)
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1. This diffusion process on SE(2) is called hypo-elliptic as its gen-

erator equals (∂ξ)
2 + Dθθ(∂θ)

2 and diffuses only in 2 directions in
a 3D space. This boils down to a sub-Riemannian manifold structure
[1], [2]. Smoothing in the missing (∂η) direction is achieved via the
commutator: [∂θ, cos θ∂x + sin θ∂y ] = − sin θ∂x + cos θ∂y .

with λ = α−1, and corresponding Euler-Lagrange equation

(I − λ∆)t = t0 ⇔ t = λ−1

(
1

λ
−∆

)−1

t0, (3)

to which we refer as the “resolvent” equation [4], as it
involves operator (αI − ∆)−1, α = λ−1. In the next sub-
sections, we follow a similar procedure with SE(2) instead
of R2, and show how the smoothing regularizer in Eq. (28)
and (30) of the main article relates to Laplace transforms of
hypo-elliptic diffusions on the group SE(2) [2], [5].

1.2 The Fundamental Single Patch Problem
In order to grasp what the (anisotropic regularization term)
in Eq. (28) and (30) of the main article actually means in
terms of stochastic interpretation/probabilistic line propa-
gation, let us consider the following single patch problem
and optimize

Esp(T ) = |(Gs ∗R2 T (·, ·, θ0)) (x0)− 1|2

+ λ

∫
R2

∫ 2π

0
‖∇T (x̃, θ̃)‖2Ddx̃dθ̃ + µ‖T‖2L2(SE(2)), (4)

with (x0, θ0) = g0 := (x0, y0, θ0) ∈ SE(2) the fixed center
of the template, and with spatial Gaussian kernel

Gs(x) =
1

4πs
e−
‖x‖2
4s .

Regarding this problem, we note the following:

• In the original problem (28) of the main article we
take N = 1, with

Uf1(x, y, θ) = Gs(x− x0, y − y0) δθ0(θ) (5)

representing a local spatially smoothed spike in
SE(2), and set y1 = 1. The general single patch case
(for arbitrary Uf1 ) can be deduced by superposition
of such impulse responses.

• We use µ > 0 to suppress the output elsewhere.
• We use 0 < s � 1. This minimum scale due to

sampling removes the singularity at (0, 0) from the
kernel that solves (4), as proven in [2].

Theorem 1. The solution to the single patch problem (4) coin-
cides up to scalar multiplication with the time integrated hypo-
elliptic Brownian motion kernel on SE(2) (depicted in Fig. 1).
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Proof. We optimize Esp(T ) over the set S(SE(2)) of all
functions T : SE(2) → R that are bounded and on
SE(2), infinitely differentiable on SE(2)\{g0}, and rapidly
decreasing in spatial direction, and 2π periodic in θ. We
omit topological details on function spaces and Hörmanders
condition [6]. Instead, we directly proceed with applying the
Euler-Lagrange technique to the single patch problem:

∀δ∈S(SE(2)) : lim
ε↓0

{Esp(T + εδ)− Esp(T )

ε

}
= 0⇔

(S∗sSs + λR+ µI)T = S∗sy1 = S∗s1, (6)

with linear functional (distribution) Ss given by

(SsT ) = (Gs ∗R2 T (·, θ0))(x0),

and with regularization operator R given by

R = −∆SE(2) := −(Dθθ∂
2
θ +Dξξ∂

2
ξ +Dηη∂

2
η) ≥ 0.

Note that lim
s→0

Ss = δ(x0,θ0) in distributional sense, and that
the constraint s > 0 is crucial for solutions T to be bounded
at (x0, θ0). By definition the adjoint operator S∗s is given by

(S∗sy, T )L2(SE(2)) = (y, SsT ) = y
∫
R2 Gs(x− x0)T (x, θ0) dx

= y
2π∫
0

∫
R2

Gs(x− x0)δθ0(θ)T (x, θ) dxdθ,

= (y Gs(· − x0)δθ0(·), T )L2(SE(2))

and thereby we deduce that

(S∗sy)(x, θ) = y Gs(x− x0)δθ0(θ),

S∗s (SsT ) = T s0 Gs(x− x0)δθ0(θ),

with ∞ > T s0 := (Gs ∗R2 T (·, θ0))(x0) > 1 for 0 < s � 1.
The Euler-Lagrange equation (6) becomes

(−λ∆SE(2) + µI)T = (1− T s0 )Gs(x− x0)δθ0(θ).

Now, when setting Tnew = T
1−T s

0
we arrive at the hypo-

elliptic resolvent equation on SE(2):

(−λ∆SE(2) + µI)Tnew = (Gs ∗R2 δx0
)δθ0 ⇔

Tnew =
(
−λ∆SE(2) + µI

)−1
es∆R2 δg0

= es∆R2
(
−λ∆SE(2) + µI

)−1
δg0

(7)

where we write es∆R2 f = Gs∗R2f for the diffusion operator,
to stress the vanishing commutators

[es∆R2 ,∆SE(2)] = es∆R2 ∆SE(2) −∆SE(2)e
s∆R2 = 0,

which directly follows from [∆R2 ,∆SE(2)] = 0. In fact, from
these vanishing commutators one can deduce that, thanks
to the isotropy of Gaussian kernel, blurring with inner-scale
s > 0 can be done either before applying the resolvent
operator or after (as seen in (7)).

The solutions Tnew are precisely the probabilistic kernels
Rα,s : SE(2) → R for time integrated contour enhance-
ments studied in [2], [5]. In fact we see that

Tnew(g) = µ−1Rα,s(g
−1
0 g),

where Rα,s = (I − α−1∆SE(2))
−1es∆R2 δ(0,0) (i.e., the im-

puls response of the resolvent operator) denotes the time-
integration of the hypo-elliptic diffusion kernel Kτ,s =
eτ∆SE(2)es∆R2 δ(0,0):

Rα,s(g) = α

∫ ∞
0

Kτ,s(g) e−ατ dτ,

Fig. 1. Top row: Comparison of kernel Rα,s(x, y, θ) along respectively
the θ and x axis. Bottom row: Isosurface of the kernel computed by
solving the fundamental single patch problem (4), the exact solution, and
an illustration of the drunkman’s pencil. For Monte Carlo simulations of
the drunkman’s pencil see the supplementary materials.

for which 3 different exact analytic formulas are derived in
[5]. The kernel Rα,s(x, θ) denotes the probability density of
finding a random brush stroke (regardless its traveling time)
at location x with orientation θ given that a ‘drunkman’s
pencil’ starts at g = (0, 0) at time zero. Here the traveling
time τ of the random pencil is assumed to be negatively
exponentially distributed with expectation α−1.

1.3 Expansion in B-splines
Now we consider the B-spline expansions (Eq. (34) in the
main article) and apply our optimization algorithm (cf. Sub-
sec. 2.4 of the main article) to the single patch problem (4),
with (x0, θ0) = (0, 0). Here we no longer need a smoothing
with a continuous Gaussian Gs, as expansion in the B-spline
basis already includes regularization. Now we set for the
smooth spike Uf1(x, y, θ) = Bn

(
x
sk

)
Bn
(
y
sl

)
Bn
(
θmod 2π
sm

)
,

and we thus approximate spikes by the same B-spline basis
in which we expressed our templates. We accept extra regu-
larization (like we did with the Gaussian in the previous sec-
tion) and choose to represent a spike by a normal B-spline.
After all, via the central limit theorem B-splines converge to
Gaussians when increasing n. We also considered to instead
use the fundamental B-Spline [7, Fig. 2], which is sharper
but suffers from oscillations, yielding less favorable results.

In our normal B-spline setting, this choice of smooth
spike representation (cf. Eq. (14) in the main article) leads
to the following equations

(S†S + λR+ µI)T = S†1,

with S the [1 × NkNlNm]-matrix whose components are
given by M(0, 0, 0)Bskslsm(k, l,m). Akin to the previous
derivations (7) this matrix-equation can be rewritten as

(λR+ µI)Tnew = S†1.

In particular our B-spline basis algorithm is a new al-
gorithm that can be used for the resolvent (hypo-)elliptic
diffusion process on SE(2). The benefit over Fourier based
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Fig. 2. Stochastic random process for contour enhancement.

algorithms is the local support of the basis functions, which
allow for sparse representations.

In Fig. 1 we compare the impulse response for Tikhonov
regularization via our B-spline expansion algorithm with
the Brownian motion prior on SE(2) (using a fine B-spline
basis) to the exact solutions derived in [2], [5]. The strong
accuracy of our algorithm shows that even in the discrete
B-spline setting the probabilistic interpretation (Thm. 1) of
our prior in SE(2)-template matching holds.

1.4 The Drunkman’s Pencil
Similar to the diffusions on R2, given by (1), the hypo-
elliptic diffusion process on SE(2) is described by the
following PDE:{

∂
∂τW = (Dξξ∂

2
ξ +Dθθ∂

2
θ )W,

W |τ=0 = W0,
(8)

initialized with W0 ∈ L2(R2) at time τ = 0. The PDE
can be used to obtain the solutions of our single patch
problem by initializing W0 with a smooth spike such as
we did in Subsec. 1.3, e.g. taking W0 = Uf1(x, y, θ) =

Bn
(
x
sk

)
Bn
(
y
sl

)
Bn
(
θmod 2π
sm

)
.

The PDE in (8) is the forward Kolmogorov equation [8]
of the following stochastic process [2]:

x(τ) = x(0)+√
2Dξξ εξ

∫ τ
0 (cos θ(τ)ex + sin θ(τ)ey) 1

2
√
τ

dτ

θ(τ) = θ(0) +
√
τ
√

2Dθθ εθ, εξ, εθ N (0, 1),
(9)

where εξ and εθ are sampled from a normal distribu-
tion with expectation 0 and unit standard deviation. The
stochastic process in (9) can be interpreted as the motion
of a drunkman’s pencil: it randomly moves forward and
backwards, and randomly changes its orientation along the
way. The resolvent hypo-elliptic diffusion kernels Rα,s(g)
(solutions to the fundamental single patch problem, up to
scalar multiplication) can then also be obtained via Monte
Carlo simulations, where the stochastic process is sampled
many times with a negatively exponentially distributed
traveling time (P (T = τ) = αe−ατ ) in order to be able to
estimate the probability density kernel Rα,s(g). This process
is illustrated in Fig. 2.

2 THE SMOOTHING REGULARIZATION MATRIX R
When expanding the templates t and T in a finite B-Spline
basis (Sec. 2 and 3 of the main article), the energy functionals
(7), (11), (28) and (30) of the main article can be expressed
in matrix vector form. The following theorems summarize

how to compute the matrixR, which encodes the smoothing
prior, for respectively the R2 and SE(2) case.

Lemma 1. The discrete smoothing regularization-term of energy
functional (7) of the main article can be expressed directly in the
B-Spline coefficients c as follows∫∫

R2

‖∇t(x, y)‖2dxdy = c†Rc, (10)

with c given by Eq. (16) of the main article, and with

R = Rkx ⊗Rlx +Rky ⊗Rly, (11)

a [NkNl × NkNl] matrix. The elements of the matrices in (11)
are given by

Rkx(k, k′) = − 1
sk
∂2B2n+1

∂x2 (k′ − k)

Rlx(l, l′) = slB
2n+1(l′ − l),

Rky(k, k′) = skB
2n+1(k′ − k),

Rly(l, l′) = − 1
sl
∂2B2n+1

∂y2 (l′ − l).

(12)

Proof. For the sake of readability we divide the
regularization-term in two parts:∫∫

R2‖∇t(x, y)‖2dxdy =
∫∫

R2

∣∣ ∂t
∂x (x, y)

∣∣2
+
∣∣∣ ∂t∂y (x, y)

∣∣∣2 dxdy,

(13)
where

Rx =
∫∫

R2

∣∣ ∂t
∂x (x, y)

∣∣2 dxdy, and

Ry =
∫∫

R2

∣∣∣ ∂t∂y (x, y)
∣∣∣2 dxdy.

We first derive the matrix-vector representation of Rx as
follows:

Rx =
∫∫

R2

∣∣ ∂t
∂x (x, y)

∣∣2 dxdy

=
Nk∑

k,k′=1

Nl∑
l,l′=1

∫∫
R2 ck,l

∂Bn

∂x ( xsk − k)Bn( ysl − l)

ck,l
∂Bn

∂x ( xsk − k
′)Bn( ysl − l

′)dxdy

=
Nk∑

k,k′=1

Nl∑
l,l′=1

ck,lck′,l′[
∞∫
−∞

∂Bn

∂x ( xsk − k)∂B
n

∂x ( xsk − k
′)dx

]
[
∞∫
−∞

Bn( ysl − l)B
n( ysl − l

′)dy

]
1
=

Nk∑
k,k′=1

Nl∑
l,l′=1

ck,lck′,l′
[

1
sk

(
∂Bn

∂x ∗
∂Bn

∂x

)
(k′ − k)

]
[sl (B

n ∗Bn) (l′ − l)]
2
=

M∑
k,k′=1

N∑
l,l′=1

ck,lck′,l′
[

1
sk
∂2B2n+1

∂x2 (k′ − k)
]

[
slB

2n+1(l′ − l)
]

= c†(Rkx ⊗Rlx)c.
(14)

Here the following properties are used:
1) The integrals of shifted B-splines can be expressed

as convolutions:∫ ∞
−∞

∂Bn

∂x

(
x

sk
− k

)
∂Bn

∂x

(
x

sk
− k′

)
dx

= − 1

sk

∫ ∞
−∞

∂Bn

∂u
(u)

∂Bn

∂u
((k′ − k)− u)du

= − 1

sk

(
∂Bn

∂u
∗ ∂B

n

∂u

)
(k′ − k).
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This is easily verified by substitution of integration
variable (u = − x

sk
+ k) and noting that Bn(x) =

Bn(−x) and ∂Bn

∂x (x) = −∂B
n

∂x (−x).
2) Convolution of two B-splines Bn of order n results

in a B-Spline B2n+1 of order 2n+ 1:

Bn ∗Bn = B2n+1.

The elements of the matrices Rky and Rly are derived in a
similar manner.

As a result of Lemma 1 we can state the following.

Corollary 1. Let V = span{Bnk,l}, with k = 1, . . . , Nk, l =
1, . . . , Nl, and shifted B-splines Bnk,l of order n (cf. Subsec. 2.4 of
the main article). Let the energy function EBlin : RNkNl → R+ be
given by Eq. (13) of the main article. Then the optimal continuous
template of the constrained optimization problem (cf. Eq. (7) of the
main article)

t∗ = argmin
t∈V

Elin(t)

has coefficients c∗ w.r.t. the B-spline basis for V , that are the
unique solution of

∇cE
B(c∗) = 0,

which boils down to Eq. (14) of the main article.

Lemma 2. The discrete regularization-term of energy functional
(28) of the main article can be expressed directly in the B-Spline
coefficients:∫∫∫

SE(2)
‖∇T‖D dxdydθ = cT (DξξRξ+DηηRη+DθθRθ)c.

(15)
Matrix Rξ is given by

Rξ =
(
RIxξ ⊗R

Iy
ξ ⊗R

Iθ
ξ

)
+
(
RIIxξ ⊗RIIyξ ⊗RIIθξ

)
+
(
RIIIxξ ⊗RIIIyξ ⊗RIIIθξ

)
+
(
RIV xξ ⊗RIV yξ ⊗RIV θξ

)
(16)

with the elements of the matrices used in the Kronecker products
given by

RIxξ (k, k′) = − 1
sk
∂2B2n+1

∂x2 (k′ − k),

RIyξ (l, l′) = slB
2n+1(l′ − l),

RIθξ (m,m′) =
π∫
0

cos2(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ,

(17)

RIIxξ (k, k′) = −RIIIxξ (k, k′) = ∂B2n+1

∂x (k′ − k),

RIIyξ (l, l′) = −RIIIyξ (l, l′) = −∂B
2n+1

∂y (l′ − l),
RIIθξ (m,m′) = RIIIθξ (m,m′) =

π∫
0

cos(θ) sin(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ,

(18)
RIV xξ (k, k′) = skB

2n+1(k′ − k),

RIV yξ (l, l′) = − 1
sl
∂2B2n+1

∂y2 (l′ − l),

RIV θξ (m,m′) =
π∫
0

sin2(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ.

(19)

Matrix Rη is given by

Rη =
(
RIIxξ ⊗RIIyξ ⊗RIV θξ

)
−
(
RIIxξ ⊗RIIyξ ⊗RIIθξ

)
−
(
RIIIxξ ⊗RIIIyξ ⊗RIIIθξ

)
+
(
RIV xξ ⊗RIV yξ ⊗RIθξ

)
.

(20)

Matrix Rθ is given by

Rθ =
(
Rxθ ⊗R

y
θ ⊗R

θ
θ

)
, (21)

with the elements of the matrices given by

Rxθ (k, k′) = skB
2n+1(k′ − k),

Ryθ(l, l′) = slB
2n+1(l′ − l),

Rθθ(m,m
′) = − 1

sm
∂2B2n+1

∂θ2 (m′ −m).
(22)

Proof. The proof of Lemma 2 follows the same steps as in the
proof of Lemma 1, only here left-invariant derivatives are
used (cf. Eq. (24) of the main article). The four separate terms
I − IV of Eq. (16) arise from the left invariant derivative ∂ξ :∣∣∣∂T∂ξ ∣∣∣2 =

∣∣∣cos(θ)∂T∂x + sin(θ)∂T∂y

∣∣∣2.

Lemma 2 has the following consequence.

Corollary 2. Let V = span{Bnk,l,m}, with k = 1, . . . , Nk, l =
1, . . . , Nl,m = 1, . . . , Nm, and shifted B-splines Bnk,l,m of order
n (cf. Subsec. 3.5 of the main article). Let the energy function
EBlin : RNkNlNm → R+ be given by

EBlin(c) =
1

N
‖Sc− y‖2 + c†(λR+ µI)c

With S and y given by (33) of the main article and with R =
DξξRξ +DηηRη +DθθRθ given in Lemma 2. Then the optimal
continuous template of the constrained optimization problem (cf.
Eq. (28) of the main article)

T ∗ = argmin
T∈V

Elin(T )

has coefficients c∗ w.r.t. the B-spline basis for V that are the
unique solution of

∇cEB(c∗) = 0.

This boils down to Eq. (14) of the main article, but then on
RNkNlNm with matrices R and S given above.

3 NORMALIZED CROSS CORRELATION

In most applications it is necessary to make the detection
system invariant to local contrast and luminosity changes.
In our template matching framework this can either be
achieved via certain pre-processing steps that filter out these
variations, or by means of normalized cross-correlation. In
normalized cross-correlation, both the template as well as
the image are (locally) normalized to zero mean and unit
standard deviation (with respect to the inner product used
in the cross-correlations). In this section, we explain the nec-
essary adaptations to extend the standard cross-correlation
based framework to normalized cross-correlations.
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3.1 Normalized Cross-Correlation in R2

In the usual cross-correlation based template matching ap-
proach, as described in Sec. 2 of the main article, we rely
on the standard L2(R2) inner product (Eq. (6) of the main
article). In normalized cross-correlation it is however conve-
nient to extend this inner product to include a windowing
function m which indicates the relevant region (support)
of the template. As such, the inner product with respect to
windowing function m is given by

(t, f)L2(R2,mdx̃) :=

∫
R2

t(x̃)f(x̃)m(x̃)dx̃, (23)

with associated norm ‖·‖L2(R2,mdx̃) =
√

(·, ·)L2(R2,mdx̃). The
windowing function has to be a smooth function m : R2 →
R+ with

∫
R2 m(x̃)dx̃ = 1. In this work, the use of a window

m is also convenient to deal with boundary conditions in the
optimization problems for template construction. We define

m(x) := ς e−
‖x‖2

s

n∑
i=0

(‖x‖2/s)i

i!
, (24)

which smoothly approximates the indicator function
1[0,r](‖x‖), covering a disk with radius r, when setting
s = 2r2

1+2n , see e.g. [9, Fig. 2]. The constant ς normalizes
the function such that

∫
R2 m(x̃)dx̃ = 1.

In normalized cross-correlation the image is locally nor-
malized (at position x) to zero mean and unit standard
deviation, which is done as follows

f̂x(x̃) :=
f(x̃)− 〈f〉Txm

‖f(x̃)− 〈f〉Txm‖L2(R2,Txmdx̃)
, (25)

with local mean 〈f〉m = (1, f)L2(R2,mdx̃). Template t̂ can be
obtained via normalization of a given template t via

t̂(x̃) :=
t(x̃)− 〈t〉m

‖t(x̃)− 〈t〉m‖L2(R2,mdx̃)
. (26)

Template matching is then done in the usual way (via
(4) of the main article), however now t̂ and f̂x are used
instead of t and f . In fact, the entire R2 cross-correlation
template matching, and template optimization framework
is extended to normalized cross-correlation by substituting
all instances of t with t̂, f with f̂x, and (·, ·)L2(R2) with
(·, ·)L2(R2,mdx̃) in Sec. 2 of the main article. However, since
templates t̂ are directly constructed via the minimization
of energy functionals, we will not explictely normalize
the templates, unless they are obtained by other methods.
E.g., Eq. (26) is used in the main article to construct basic
templates obtained by averaging positive object patches
(Subsec. 4.1 of the main article).

3.2 Normalized Cross-Correlation in SE(2)

Similar to the R2 case, templates and orientation scores are
locally normalized to zero mean and unit standard devi-
ation, however, now with respect to the L2(SE(2),Mdg̃)
inner product, which is given by

(T,Uf )L2(SE(2),Mdg̃) :=∫
R2

∫ 2π

0
T (x̃, θ̃)Uf (x̃, θ̃)M(x̃, θ̃)dx̃dθ̃, (27)

with norm ‖·‖L2(SE(2),Mdg̃) =
√

(·, ·)L2(SE(2),Mdg̃). Also
here windowing function M indicates the support of the
template, and has the property

∫
R2

∫ 2π
0 M(x̃, θ̃)dx̃dθ̃ = 1.

We define
M(x, θ) :=

1

2π
m(x), (28)

independent of θ and with m(x) given by (24).
The (locally at g) normalized orientation score and tem-

plate T are then given by

Ûf,g(x̃, θ̃) :=
Uf (x̃, θ̃)− 〈Uf 〉LgM

‖Uf (x̃, θ̃)− 〈Uf 〉LgM‖L2(SE(2),LgMdg̃)

, (29)

T̂ (x̃, θ̃) :=
T (x̃, θ̃)− 〈T 〉M

‖T (x̃, θ̃)− 〈T 〉M‖L2(SE(2),Mdg̃)

, (30)

with mean 〈Uf 〉M = (1, Uf )L2(SE(2),Mdg̃)).

3.3 Efficient local normalization of f̂x and Ûf,g.

Since the normalized image f̂x depends on the location x it
needs to be calculated for every translation of the template,
which makes normalized cross-correlation computationally
expensive. Therefore, (25) can be approximated by assuming
that the local average is approximately constant in the area
covered by m. That is, assuming 〈f〉Txm(x̃) ≈ 〈f〉Tx̃m(x̃) =
(m?f)(x̃) for ‖x̃− x‖ < r, with r the radius that determines
the extent of m, (25) is approximated as follows:

f̂x(x̃) ≈
f(x̃)− (m ? f)(x̃)√

(m ? (f − (m ? f))2)(x̃)
. (31)

Similarly, in the SE(2)-case (29) can be approximated via

Ûf,g(x̃, θ̃) ≈
Uf (x̃, θ̃)− (M ?SE(2) Uf )(x, θ̃)√

(M ?SE(2) (Uf − (M ?SE(2) Uf ))2)(x, θ̃)
.

(32)

3.4 Including a Region of Interest Mask

Depending on the application, large portions of the image
might be masked out. This for example the case in retinal
images (see circular masks in Fig. 4). To deal with this,
template matching is only performed inside the region of
interest defined by a mask image mroi : R2 → {0, 1}.
Including such a mask is important in normalized template
matching, and can be done by replacing the standard inner
products by

(t, f)roiL2(R2,m,dx̃) :=
(t, fmroi)L2(R2,m,dx̃)

(1,mroi)L2(R2,m,dx̃)
, (33)

(T,Uf )roiL2(SE(2),M,dg̃) :=
(T,UfM

roi)L2(SE(2),M,dg̃)

(1,Mroi)L2(SE(2),M,dg̃)
, (34)

with Mroi(x, θ) = mroi(x).

4 ADDITIONAL DETAILS ON THE DETECTION
PROBLEMS

In this section we describe additional details about the
implementation and results of the three detection problems
discussed in the main article.
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Fig. 3. A selection of positive and negative image patches fi used in the training of templates.

TABLE 1
Average processing times. For optic nerve head detection (ONH) the average is taken over 1529 images of the TC, MESSIDOR, DRIVE and

STARE database. For fovea detection the average is taken over 1408 images of the TC and MESSIDOR database. For pupil detection the average
is taken over 1521 images of the BioID database.

ONH Fovea Pupil (left & right)
R2 SE(2) R2 SE(2) R2 SE(2)

Timings (ms)

1. Rescaling 106 106 111 111 0 0
2. R2-Processing 66 66 64 64 71 71
3. OS Transform 0 108 0 108 0 121
4. SE(2)-Processing 0 5 0 5 0 6
5. Template Matching 20 195 19 190 26 116

Total 192 479 195 477 97 313

Combined Total Timings (ms) - R2 and SE(2)

497 501 420

Combined Total Timings (ms) - Fovea and ONH

730
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TABLE 2
Success rates for optic nerve head detection (± standard deviation, number of fails in parenthesis) with varying accuracy requirements in 5-fold

cross validation. Maximum distance to ground truth location is expressed in optic disk radius R.

Maximum distance to ground truth
Database (# of images) R/8 R/4 R/2 R 2R

ES (SLO) (208) 98.05% ± 2.04% (4) 100.0% ± 0.00% (0) 100.0% ± 0.00% (0) 100.0% ± 0.00% (0) 100.0% ± 0.00% (0)
TC (208) 84.19% ± 4.34% (33) 94.54% ± 3.51% (11) 99.52% ± 1.06% (1) 100.0% ± 0.00% (0) 100.0% ± 0.00% (0)
MESSIDOR (1200) 73.07% ± 3.69% (323) 94.41% ± 1.47% (67) 99.50% ± 0.46% (6) 99.92% ± 0.19% (1) 100.0% ± 0.00% (0)
DRIVE (40) 70.84% ± 26.0% (13) 91.69% ± 12.3% (4) 98.18% ± 4.07% (1) 98.18% ± 4.07% (1) 100.0% ± 0.00% (0)
STARE (81) 48.12% ± 10.27% (42) 74.94% ± 6.52% (20) 89.39% ± 8.16% (9) 98.67% ± 2.98% (1) 98.67% ± 2.98% (1)

All Images (1737) 76.11% ± 2.58% (415) 94.13% ± 0.79% (102) 99.02% ± 0.26% (17) 99.83% ± 0.26% (3) 99.94% ± 0.13% (1)

4.1 Training Samples
In all three applications training samples were used to com-
pute the templates. Positive training samples were centered
around the object of interest. Negative training samples
were centered around random locations in the image, but
not within a certain distances to the true positive object
location. In the retinal applications this distance was one
optic disk radius, in the pupil detection application this was
a normalized distance of 0.1 (cf. Eq.(39) of the main article).
An selection of the 2D image pathes that were used in the
experiments are shown in Fig. 3.

4.2 Processing Pipeline, Settings and Timings
4.2.1 Processing Pipeline
In all three application the same processing pipeline was
used. The pipeline can be divided into the following 5 steps:

1) Resizing. Each input image is resized to a certain
operating resolution and cropped to remove large
regions with value 0 (outside the field of view mask
in retinal images, see e.g. Fig. 4). The retinal images
are resized such that the pixel size was approxi-
mately 40µm/pix. In the pupil detection application
no rescaling or cropping was done.

2) R2-Processing. In all three applications we applied a
local intensity and contrast normalization step using
an adaptation of [10] which we explain below. The
locally normalized image f̂ is then mapped through
an error function via erf(8f̂) to dampen outliers.

3) Orientation score transform. The processed image is
then taken as input for an orientation score trans-
form using Eq. (23) of the main article. For the
oriented wavelets we used cake wavelets [9], [11] of
size [51×51] and with angular resolution sθ = π/12,
and with sampling θ from 0 to π.

4) SE(2)-Processing. For phase-invariant, nonlinear,
left-invariant [5], and contractive [12] processing
on SE(2), we work with the modulus of the com-
plex valued orientation scores rather than with the
complex-valued scores themselves (taking the mod-
ulus of quadrature filter responses is an effective
technique for line detection, see e.g. Freeman et al.
[13]).

5) Template Matching. Finally we perform template
matching using respectively Eqs. (3),(4) and (5) of
the main article for the R2 case and Eqs. (3),(25) and
(26) of the main article for the SE(2) case.

Regarding the image resolutions (step 1) we note that
the average image size after rescaling was [300 × 300]. The
average image resolutions in each database were as follows:

• ES (SLO) contained images of average resolution
13.9µm/pix.

• TC contained images of average resolution
9.4µm/pix.

• MESSIDOR contained images of 3 cameras with
average resolutions 13.6µm/pix, 9.1µm/pix and
8.6µm/pix.

• DRIVE contained images of average resolution
21.9µm/pix.

• STARE contained images of average resolution
17.6µm/pix.

Regarding local image normalization (step 2) we note
the following. Local image normalization was done using
an adaptation of [10]. The method first computes a local
average and standard deviation of pixel intensities, and the
image is locally normalized to zero mean and unit standard
deviation. This is done via Eq. (31). Then a background mask
is construct by setting pixels with a larger distance than 1
standard deviation to the average (Mahalanobis distance) to
0, and other pixels to 1. This mask is then used to ignore
outliers in a second computation of the local average and
standard deviation. The final normalized image is again
computed via Eq. (31) but now with the inclusion of the
background mask, see Eq. (33).

4.2.2 Template Settings

In the retinal applications we used R2 templates of size
[Nx×Ny] = [251× 251] which were covered by a grid of B-
spline basis functions of size [Nk×Nl] = [51×51], the SE(2)
templates were of size [Nx × Ny × Nθ] = [251 × 251 × 12]
and were covered by a grid of B-spline basis functions of
size [Nk ×Nl ×Nm] = [51× 51× 12].

In the pupil detection application we used R2 templates
of size [Nx×Ny] = [101×101] which were also covered by a
grid of B-spline basis functions of size [Nk×Nl] = [51×51],
the SE(2) templates were of size [Nx ×Ny ×Nθ] = [101×
101 × 12] and were also covered by a grid of B-spline basis
functions of size [Nk ×Nl ×Nm] = [51× 51× 12].

The regularization parameters (λ, µ and Dθθ) for the dif-
ferent template types were automatically optimized using
generalized cross validation.
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4.2.3 Timings
We computed the average time for detecting one (or two)
object(s) in an image and tabulated the results in Tab. 1.
Here we sub-divided the timings into the 5 processing steps
explained in Subsec. 4.2.1. The average (full) processing
time on the retinal images was in both applications approxi-
mately 500ms. When both the ONH and fovea are detected
by the same processing pipeline the processing took 730ms.
For pupil detection the average time to detect both the left
and right pupil on the full images was 420ms.

The retinal images were on average of size [1230×1792],
and [300 × 300] after cropping and resizing. The images in
the pupil detection application were not resized or cropped
and were of size [286× 384].

All experiments were performed using Wolfram Mathe-
matica 10.4, on a computer with an Intel Core i703612QM
CPU and 8GB memory.

4.3 Detection Results
In this section we provide the results for the three separate
applications. A general discussion of these results can be
found in the main article.

4.3.1 Optic Nerve Head Detection
A Table of detection performance for each type of template
is provided in Tab. 1 of the main article. In Fig. 4 we show
the 3 failed cases for ONH detection, and a selection of
correct ONH localizations in difficult images. In Table 2 we
show detection results for varying accuracy criteria. Note
that detection results are typically reported for the accuracy
requirement of 1 optic disk radius with the target (see also
state-of-the-art comparison in Table 2 of the main article).

4.3.2 Fovea Detection
A Table of detection performance for each type of template
is provided in Tab. 3. In Fig. 5 we show next to a selection of
successful detections the only 5 failed cases on images from
conventional fundus (CF) cameras (TC, MESSIDOR, DRIVE,
STARE), and 3 of the failed detections in images coming
from an scanning laser ophthalmoscopy (SLO) camera.

As can also be read from Tab. 3, we found that fovea
detection in SLO images was significantly more difficult
than fovea detection in CF images. The reason for this is
that on SLO images the clear dark blob-like shape is not
always present on these images. Compare for example the
positive fovea patches from Fig. 3 (where one generally sees
a dark blob at the center) with the fovea locations in the
bottom row of images in Figs. 4 and 5.

Additionally, the ES (SLO) and CF databases are also
more difficult than the MESSIDOR database for fovea detec-
tion, as these two databases contain a mix of both fovea cen-
tered and ONH centered images. The MESSIDOR database
contains only fovea centered images, in which case the fovea
is always located around the center of the image. Therefore,
even though MESSIDOR is one of the most used databases,
it might not be the most representative database for fovea
detection benchmarking.

We show detection performance for a range of accuracy
requirements in Table 4 for the different databases used in
our experiments, and in Table 5 a comparison to the state

of the art. There we see that for the stricter requirement of
detection within half an optic disk radius our method still
outperforms the state of the art. We also see that with further
decreasing the acceptance distance (R/4 or lower) none of
the methods provided acceptable results.

4.3.3 Pupil Detection

A Table of detection performance for each type of template
is provided in Tab. 6. In Fig. 6 we show a selection of failed
and successful detections. By inspection of the failed cases
we found that a main source of failed detections was due to
rotations of the head. As stated in the previous section 4.2
we did not employ a rotation invariant detection scheme.
Doing so might improve the results. Other failed detections
could be attributed to closed eyes, reflection of glasses,
distracting background objects and different scales (object
distance to camera).

5 ROTATION-SCALE INVARIANT MATCHING

5.1 A Basic Extension

The extension to rotation and scale invariant object local-
ization of the 2D cross-correlation based template matching
approach, described in Eqs. (3)-(5) of the main article, is as
follows. For the linear potential function (Eq. (4) of the main
article) we can define

PR2

lin,inv(x) := max
a ∈ [a−, a+],
α ∈ [0, 2π)

(TxSaRα t, f)L2(R2), (35)

and for the logistic regression case (Eq. (5) of the main
article) we define

PR2

log,inv(x) := max
a ∈ [a−, a+],
α ∈ [0, 2π)

σ
(
(TxSaRα t, f)L2(R2)

)
,

(36)
with σ the logistic sigmoid function defined in Eq. (5) of
the main article, and with rotation operator Rα and scaling
operator Sa defined by

(Rαt)(x) = t(R−1
α x), (37)

(Sat)(x) = a−1t(ax), (38)

with rotation matrix Rα representing a counter clockwise
rotation of angle α. By taking the maximum over scales a
(in a suitable range [a−, a+]) and rotations α, the response
of the best matching template is obtained at each location
x, and invariance is obtained with respect to scaling and
rotation of the object of interest.

The rotation/scale invariant extension of the SE(2)
cross-correlation template matching case (Eqs. (25)-(26) of
the main article) is equally straightforward; for the linear
potential we define

P
SE(2)
lin,inv(x) := max

a ∈ [a−, a+],
α ∈ [0, 2π)

(TxSaRα T,Uf )L2(SE(2)),

(39)
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Fig. 4. Detection results of our best method for optic nerve head detection in retinal images. Successful detection are indicated with a green frame
around the image, failed detections are indicated with a red frame. In the ONH detection application there were only 3 fails in a set of 1737 images.
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TABLE 3
Average template matching results (± standard deviation) for fovea detection in 5-fold cross validation, number of failed detections in parentheses.

Template ES (SLO) TC MESSIDOR All Images
ID 208 208 1200 1616

R2 templates

AR2 76.36% ± 6.79% (49) 98.24% ± 2.74% (3) 98.41% ± 0.22% (19) 95.60% ± 0.98% (71)

Blin:R2 23.50% ± 3.81% (159) 31.66% ± 9.03% (142) 51.19% ± 5.97% (587) 45.07% ± 3.33% (888)
Clin:R2 45.65% ± 8.61% (113) 98.24% ± 2.74% (3) 98.59% ± 0.36% (17) 91.77% ± 1.26% (133)
Dlin:R2 44.21% ± 4.62% (116) 99.49% ± 1.14% (1) 98.84% ± 0.31% (14) 91.90% ± 0.59% (131)
Elin:R2 46.10% ± 8.11% (112) 98.86% ± 1.57% (2) 98.67% ± 0.34% (16) 91.95% ± 1.18% (130)

Blog:R2 1.43% ± 1.31% (205) 10.27% ± 5.09% (185) 20.07% ± 3.00% (959) 16.53% ± 2.52% (1349)
Clog:R2 9.59% ± 3.74% (188) 70.30% ± 8.57% (61) 77.61% ± 4.64% (267) 68.06% ± 3.53% (516)
Dlog:R2 11.48% ± 4.70% (184) 83.47% ± 7.80% (32) 88.22% ± 2.81% (141) 77.90% ± 2.00% (357)
Elog:R2 2.86% ± 2.62% (202) 79.68% ± 7.92% (40) 84.79% ± 5.16% (181) 73.82% ± 2.62% (423)

SE(2) templates

ASE(2) 67.81% ± 4.69% (67) 79.13% ± 9.11% (40) 98.25% ± 0.68% (21) 92.08% ± 0.84% (128)

Blin:SE(2) 83.19% ± 2.76% (35) 71.53% ± 7.36% (58) 91.31% ± 0.68% (104) 87.81% ± 1.25% (197)
Clin:SE(2) 83.65% ± 3.18% (34) 84.13% ± 6.25% (32) 98.23% ± 1.04% (21) 94.62% ± 0.36% (87)
Dlin:SE(2) 73.57% ± 4.71% (55) 83.69% ± 6.83% (33) 97.88% ± 1.17% (25) 93.01% ± 1.09% (113)
Elin:SE(2) 77.83% ± 4.29% (46) 84.88% ± 6.69% (30) 98.22% ± 1.23% (21) 94.00% ± 0.93% (97)

Blog:SE(2) 75.49% ± 5.73% (51) 60.80% ± 5.68% (80) 92.79% ± 1.98% (86) 86.56% ± 2.20% (217)
Clog:SE(2) 79.33% ± 6.57% (43) 70.87% ± 10.28% (59) 96.90% ± 0.71% (37) 91.39% ± 1.36% (139)
Dlog:SE(2) 62.09% ± 6.66% (79) 72.57% ± 8.59% (54) 96.64% ± 1.05% (40) 89.30% ± 0.63% (173)
Elog:SE(2) 68.34% ± 8.59% (66) 72.20% ± 8.53% (55) 96.57% ± 0.96% (41) 89.98% ± 1.25% (162)

Template combinations (sorted on performance)

Clin:R2 + Clog:SE(2) 97.17% ± 3.01% (6) 99.17% ± 1.13% (2) 99.74% ± 0.38% (3) 99.32% ± 0.26% (11)
∗ AR2 + Clin:SE(2) 98.08% ± 2.03% (4) 98.07% ± 1.95% (4) 99.68% ± 0.33% (4) 99.26% ± 0.47% (12)
Elin:R2 + Clog:SE(2) 96.20% ± 3.15% (8) 99.17% ± 1.13% (2) 99.75% ± 0.23% (3) 99.20% ± 0.35% (13)
Elin:R2 + Clin:SE(2) 96.65% ± 2.13% (7) 99.17% ± 1.13% (2) 99.66% ± 0.36% (4) 99.19% ± 0.42% (13)
Clin:R2 + Clin:SE(2) 97.14% ± 1.97% (6) 98.78% ± 1.78% (3) 99.58% ± 0.31% (5) 99.13% ± 0.40% (14)
AR2 + Elin:SE(2) 97.59% ± 1.73% (5) 98.07% ± 1.95% (4) 99.59% ± 0.28% (5) 99.13% ± 0.25% (14)
Elin:R2 + Elin:SE(2) 96.16% ± 2.76% (8) 99.17% ± 1.13% (2) 99.58% ± 0.31% (5) 99.07% ± 0.38% (15)
Elin:R2 +Dlin:SE(2) 95.71% ± 3.07% (9) 99.17% ± 1.13% (2) 99.58% ± 0.31% (5) 99.01% ± 0.40% (16)
Clin:R2 + Elin:SE(2) 96.16% ± 2.76% (8) 98.78% ± 1.78% (3) 99.58% ± 0.31% (5) 99.01% ± 0.51% (16)
AR2 + Clog:SE(2) 96.65% ± 2.13% (7) 98.07% ± 1.95% (4) 99.58% ± 0.42% (5) 99.01% ± 0.26% (16)

... ... ...
† AR2 +ASE(2) 92.85 % ± 4.68% (15) 95.84% ± 2.58% (8) 99.58% ± 0.30% (5) 98.27% ± 0.70% (28)

... ... ...
∗Best template combination that does not rely on logistic regression.
†Best template combination that does not rely on template optimization.

TABLE 4
Success rates for fovea detection (± standard deviation, number of fails in parenthesis) with varying accuracy requirements in 5-fold cross

validation. Maximum distance to ground truth location is expressed in optic disk radius R.

Maximum distance to ground truth
Database (# of images) R/8 R/4 R/2 R 2R

ES (SLO) (208) 66.91% ± 4.64% (69) 92.85% ± 3.16% (15) 94.74% ± 1.93% (11) 97.17% ± 3.01% (6) 97.66% ± 3.28% (5)
TC (208) 49.51% ± 4.07% (106) 80.33% ± 3.22% (40) 95.41% ± 1.77% (9) 99.17% ± 1.13% (2) 99.61% ± 0.88% (1)
MESSIDOR (1200) 61.81% ± 2.64% (459) 90.56% ± 1.31% (113) 98.07% ± 0.87% (23) 99.74% ± 0.38% (3) 100.0% ± 0.00% (0)

All Images (1616) 60.78% ± 1.84% (634) 89.60% ± 0.80% (168) 97.34% ± 0.65% (43) 99.32% ± 0.26% (11) 99.63% ± 0.40% (6)
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TABLE 5
Success rates for fovea detection (number of fails in parenthesis) with varying accuracy requirements; a comparison to literature using the

MESSIDOR database. Maximum distance to ground truth location is expressed in optic disk radius R.

Maximum distance to ground truth
Method R/8 R/4 R/2 R 2R

Niemeijer et al. [14], [15] 75.67% (292) 93.50% (78) 96.83% (38) 97.92% (25) -
Yu et al. et al. [16] - - 95.00% (60) - -
Gegundez-Arias et al. [15] 80.42% (235) 93.90% (73) 96.08% (47) 96.92% (37) 97.83% (26)
Giachetti et al. [17] - - - 99.10% (11) -
Aquino [18] - - - 98.20% (21) -

Proposed 61.81% (459) 90.56% (113) 98.07% (23) 99.74% (3) 100.0% (0)

Fig. 5. Detection results of our best method for fovea detection in retinal images. Successful detection are indicated with a green frame around the
image, failed detections are indicated with a red frame. In the fovea detection application there were only 5 fails in a set of 1408 conventional fundus
(CF) camera images. Out of the 208 scanning laser ophthalmoscopy (SLO) images there were 6 fails, 3 of them are shown in this figure.
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Fig. 6. Detection results of our best method for pupil detection. Successful detection are indicated with a green frame around the image, failed
detections are indicated with a red frame.

and for the logistic potential we define

P
SE(2)
log,inv(x) := max

a ∈ [a−, a+],
α ∈ [0, 2π)

σ
(
(TxSaRα T,Uf )L2(SE(2))

)
,

(40)
with for orientation score objects T,Uf ∈ L2(SE(2)) the
rotation and scaling operators defined respectively by

(RαT )(x, θ) = T (R−1
α x, θ − α), (41)

(SaT )(x, θ) = a−1T (ax, θ). (42)

It depends on the addressed template matching problem
whether or not such invariance is desirable or not. In many
applications the object is to be found in a human environ-
ment context, in which some objects tend to appear in spe-
cific orientations or at typical scales, and in which case rota-
tion/scale invariance might not be desirable. E.g. the sizes
of anatomical structures in the retina are relatively constant
among different subjects (constant scale) and retinal images
are typically taken at a fixed orientation (constant rotation).
In the pupil detection problem the subjects typically appear
in upright position behind the camera (constant rotation),
and within a reasonable distance to the camera (constant

scale). In the next Subsec. 5.2.1 we indeed show that in the
applications considered in this manuscript rotation/scale
invariance is not necessarily a desired property, and that
computation time linearly increases with the number of
rotations/scalings tested for (cf. Subsec. 5.2.2).

5.2 Results with Rotation and Scale Invariance
Here we perform rotation and scale invariant template
matching via the extension described in Subsec. 5.1. We
selected the best template combination for each specific
application and compared non-invariant template matching
(as described in the main article) to rotation and/or scale
invariant template matching (Subsec. 5.1). The best template
combination for ONH detection was AR2 + Clog:SE(2), for
fovea detection this was Clin:R2 + Clog:SE(2), and for pupil
detection this was Dlin:R2 + Elin:SE(2).

For the retinal applications we only tested for rotation
invariance with

α ∈ {−π
6
,−π

8
,− π

12
,− π

24
, 0,

π

24
,
π

12
,
π

8
,
π

6
},

and did not included scale invariance since each retinal
image was already rescaled to a standardized resolution (see
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TABLE 6
Average template matching results (± standard deviation) for pupil
detection in 5-fold cross validation, number of failed detections in

parentheses. A successful detection has a normalized error e ≤ 0.1.

Template BioID (Full image) BioID (Periocular image)
ID 1521 1521

R2 templates

AR2 41.03% ± 1.45% (897) 59.70% ± 1.52% (613)

Blin:R2 0.00% ± 0.00% (1521) 3.62% ± 1.09% (1466)
Clin:R2 12.95% ± 2.22% (1324) 67.26% ± 2.55% (498)
Dlin:R2 8.28% ± 1.80% (1395) 75.68% ± 2.33% (370)
Elin:R2 11.51% ± 2.25% (1346) 71.47% ± 2.76% (434)

Blog:R2 0.00% ± 0.00% (1521) 0.00% ± 0.00% (1521)
Clog:R2 12.89% ± 2.06% (1325) 39.91% ± 3.37% (914)
Dlog:R2 1.84% ± 0.95% (1493) 22.09% ± 2.37% (1185)
Elog:R2 10.39% ± 2.26% (1363) 37.21% ± 4.37% (955)

SE(2) templates

ASE(2) 57.72% ± 1.68% (643) 75.34% ± 1.31% (375)

Blin:SE(2) 8.74% ± 2.00% (1388) 41.81% ± 5.04% (885)
Clin:SE(2) 84.61% ± 4.19% (234) 86.78% ± 3.68% (201)
Dlin:SE(2) 85.53% ± 3.44% (220) 87.18% ± 3.71% (195)
Elin:SE(2) 85.47% ± 3.82% (221) 87.11% ± 3.87% (196)

Blog:SE(2) 0.00% ± 0.00% (1521) 0.13% ± 0.29% (1519)
Clog:SE(2) 86.52% ± 0.77% (205) 93.95% ± 1.33% (92)
Dlog:SE(2) 75.21% ± 2.18% (377) 89.48% ± 2.27% (160)
Elog:SE(2) 83.30% ± 1.68% (254) 92.77% ± 1.02% (110)

Template combinations (sorted on performance full image)
∗Clin:R2 + Elin:SE(2) 93.49% ± 1.49% (99) 95.60% ± 1.46% (67)
Clin:R2 +Dlin:SE(2) 93.16% ± 1.54% (104) 95.00% ± 1.15% (76)
Elin:R2 + Elin:SE(2) 93.10% ± 1.04% (105) 95.59% ± 0.89% (67)
Elin:R2 +Dlin:SE(2) 92.97% ± 1.62% (107) 95.27% ± 1.31% (72)
Clin:R2 + Clin:SE(2) 92.70% ± 1.41% (111) 95.33% ± 0.97% (71)
Elin:R2 + Clin:SE(2) 92.64% ± 0.94% (112) 95.33% ± 0.94% (71)
Dlin:R2 +Dlin:SE(2) 92.51% ± 0.96% (114) 95.79% ± 0.82% (64)
Dlin:R2 + Elin:SE(2) 92.24% ± 1.23% (118) 95.86% ± 0.89% (63)
Elog:R2 +Dlin:SE(2) 92.11% ± 2.26% (120) 93.23% ± 1.93% (103)
Dlin:R2 + Clog:SE(2) 92.05% ± 1.52% (121) 95.14% ± 0.78% (74)

... ...

Template combinations (sorted on performance periocular image)
∗Dlin:R2 + Elin:SE(2) 92.24% ± 1.23% (118) 95.86% ± 0.89% (63)
Dlin:R2 +Dlin:SE(2) 92.51% ± 0.96% (114) 95.79% ± 0.82% (64)
Dlin:R2 + Clin:SE(2) 91.52% ± 1.25% (129) 95.73% ± 0.77% (65)
Elin:R2 + Elin:SE(2) 93.10% ± 1.04% (105) 95.59% ± 0.89% (67)
Clin:R2 + Elin:SE(2) 93.49% ± 1.49% (99) 95.60% ± 1.46% (67)
Elin:R2 + Clin:SE(2) 92.64% ± 0.94% (112) 95.33% ± 0.94% (71)
Clin:R2 + Clin:SE(2) 92.70% ± 1.41% (111) 95.33% ± 0.97% (71)
Elin:R2 +Dlin:SE(2) 92.97% ± 1.62% (107) 95.27% ± 1.31% (72)
Dlin:R2 + Elog:SE(2) 91.72% ± 1.23% (126) 95.27% ± 0.79% (72)
Dlin:R2 + Clog:SE(2) 92.05% ± 1.52% (121) 95.14% ± 0.78% (74)

... ...
† AR2 +ASE(2) 61.34% ± 1.54% (588) 68.18% ± 1.25% (484)

... ...
∗Best template combination that does not rely on logistic regression.
†Best template combination that does not rely on template optimization.

TABLE 7
Average template matching results (± standard deviation, number of

fails between parenthesis) for optic nerve head (ONH), fovea, and pupil
detection in 5-fold cross validation.

Method Success rate

ONH Detection (1737 images)

No invariance 99.83% ± 0.26% (3)
Rotation invariance 99.60% ± 0.16% (7)

Fovea Detection (1616 images)

No invariance 99.32% ± 0.26% (11)
Rotation invariance 97.10% ± 0.65% (47)

Pupil Detection (1521 images)

No invariance 95.86% ± 0.89% (63)
Rotation invariance 94.48% ± 1.62% (84)
Scale invariance 95.33% ± 1.46% (71)
Rotation + scale invariance 94.28% ± 2.10% (87)

Subsec. 4.2.1). In pupil detection we tested for a range of
scalings with

a ∈ {0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3}

to deal with varying pupil sizes caused by varying distances
to the camera; and we tested for a range of rotations with

α ∈ {−π
4
,−π

8
,− π

16
, 0,

π

16
,
π

8
,
π

4
}

to deal with rotations of the head.

5.2.1 Detection Results
The detection results are shown in Table. 7. Here we can
see that in all three applications the inclusion of a rota-
tion/scale invariant matching scheme results in a slight
decrease in performance. This can be explained by the fact
that variations in scale an rotation within the databases
are small, and that the trained templates can already deal
robustly with these variations (due to the presence of such
variations in the training set). By introducing rotation/scale
invariance one then only increases the likelihood of false
positive detections.

5.2.2 Computation Time
The effect on computation time of rotation/scale invariant
matching is shown in Fig. 7. Here one sees that compu-
tation time linearly increases with the number of template
rotations and scalings tested for. This timings-experiment
is performed on the pupil detection application, and the
shown timings are only of step 5 of the full detection pipeline
(see Subsec. 4.2.1 and Table 1) as this is the only step that is
affected by the rotation/scale invariant extension.
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[14] M. Niemeijer, M. D. Abràmoff, and B. van Ginneken, “Fast de-
tection of the optic disc and fovea in color fundus photographs.”
MEDIA, vol. 13, no. 6, pp. 859–70, 2009.

[15] M. E. Gegundez-Arias, D. Marin et al., “Locating the fovea center
position in digital fundus images using thresholding and feature
extraction techniques,” Computerized Medical Imaging and Graphics,
vol. 37, no. 56, pp. 386 – 393, 2013, retinal Image Analysis.

[16] H. Yu, S. Barriga, C. Agurto, S. Echegaray et al., “Fast localization
of optic disc and fovea in retinal images for eye disease screening,”
Proc. SPIE, vol. 7963, pp. 796 317–796 317–12, 2011.

[17] A. Giachetti, L. Ballerini, E. Trucco, and P. Wilson, “The use
of radial symmetry to localize retinal landmarks,” Computerized
Medical Imaging and Graphics, vol. 37, no. 56, pp. 369 – 376, 2013,
retinal Image Analysis.

[18] A. Aquino, “Establishing the macular grading grid by means of
fovea centre detection using anatomical-based and visual-based
features,” Comp. in Biology and Medicine, vol. 55, pp. 61 – 73, 2014.


