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Preface

Can we use retinal images to recognize and identify the development of (systemic) dis-

eases in such an early stage that treatment is most effective (before pathologies occur),

and perhaps, that further disease progression can be prevented all together? I believe

that the answer to this question is a ”definite maybe”. Computer aided diagnosis and

automatic disease screening in retinal imaging are already becoming common practice

due to state-of-the-art approaches in which quantitative image analysis algorithms and

machine learning methods are ingeniously combined to effectively determine the pres-

ence of retinal pathologies. With respect to early diagnosis the following developments

are promising: (1) the growing body of evidence found in literature that shows that al-

terations in the vascular system (induced by systemic diseases) can be quantified using

retinal images; and (2) the ever advancing field of machine intelligence. With the pur-

pose of supporting large-scale clinical studies, which are necessary to learn more about

the vascular components of disease progression, and supporting large-scale screening

programs, I describe in this thesis a comprehensive retinal image processing toolset.

As such, I hope to contribute to the realization of early diagnosis screening programs

and getting one step closer to a ”definite yes”.

In each specialized retinal image analysis task one has to deal with fundamen-

tal problems: large variations in appearance of anatomical landmarks; short-cuts and

over/under-segmentation in vessel tracking and segmentation due to complex patterns;

the presence of pathologies; low image quality; and the involved quantification of geo-

metrical vessel properties. As described in this thesis, all of the aforementioned prob-

lems can be effectively addressed in a unified approach in which curves and image data

are analyzed in a higher dimensional space SE(2) of positions (x, y) and orientations

θ. This approach is inspired by the finding of multi-orientation columns in our visual

cortex. In this new representation, 2D curves become 3D curves (illustrated on the

cover of this thesis) that have their tangent vectors restricted to sub-spaces (illustrated

with rectangles) of the full 3D tangent spaces, and 2D images are analyzed as functions

ix



0. PREFACE

on the 3D space SE(2). In the analysis we have to deal with the curved geometry

of SE(2), and together with the imposed restrictions on the 3D curves, this has the

consequence that we have to consider a sub-Riemannian geometry on SE(2).

In order to solve problems encountered in conventional image processing, I applied

and designed fundamental differential geometrical methods. In this process I had to

expand my knowledge on abstract formal concepts, which was both interesting and

challenging coming from an engineering background. I have put effort in explaining the

basics of sub-Riemannian geometry on position and orientation space as intuitively as

possible, and with many illustrations. As such, I hope to have delivered a thesis which

is also accessible to other engineers in medical image processing.

The contents of this thesis are illustrated in the diagram above, and are organized

in three parts as follows:

I: Introduction: This part is split into three chapters. A clinical motivation of this

research is given in Ch. 1, a technical background of the used theory is given in

Ch. 2, and an overview of all the applications developed in this thesis is provided
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in Ch. 3. In particular Ch. 3 can be read as a sequence of (extended) abstracts

which can guide the reader through the main content of this thesis (Part III).

II: Differential Geometrical Tools: In Ch. 4 the differential geometrical tools used

in the processing and analysis of orientation scores (image data represented as

densities on SE(2)) are explained. Together with Ch. 2 it defines the basis on

which all the subsequent applications of Part III are based.

III: Applications: The chapters 6 to 12 each describe a different application in retinal

imaging based on the theory of Part II. These chapters can be read separately,

in no specific order.

I wrote the thesis in such a way that the reader

• who is primarily interested in the (results of the) addressed applications can

concentrate on the comprehensive overview in Ch. 3.

• who first wants to get acquainted with the basic mathematical tools can find

them in Ch. 2 and Ch. 4.

I would like to acknowledge that this thesis could not have obtained its final form

without the contributions of others involved in this project. This includes all the co-

authors that have contributed to the publications of the contents of this thesis. In
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1. CLINICAL BACKGROUND

Figure 1.1: From left to right the anatomy of the eye, an image obtained with a retinal

imaging device, an illustration of the human vascular system. A special property of the

retina is that it is one of the only places in the human body where the vascular system

can be directly observed.

1.1 Retinal Imaging

The eyes are our window to the outside world, and like many other windows, it works

two ways. It allows the outside world to take a look inside the human body as well.

The fact that our vision is based on an optical path that maps light (from the outside

world) to the retina allows for the imaging of the inside of the eye. This is the main

principle on which most retinal imaging devices are based: they make use of an optical

system consisting of a light source and a system of lenses that corrects for the refraction

of light caused by the cornea, lens and vitreous fluid (see Fig. 1.1 for the anatomy of

the eye). As such, these devices allow for the direct and non-invasive optical imaging

of the living tissue that covers the inside of the eye.

The interior of the eye is called the fundus and its most complex structure is the

retina: a thin layer of tissue responsible for converting light into neuronal signals that

are forward (via the optic nerve) to the brain for processing. Optical imaging devices

for photography of the fundus are usually called fundus cameras, and they are more

generally referred to as retinal imaging devices. Retinal imaging devices allow us to

observe the retina in great detail, and are proven to be of great diagnostic value. They

can be used to diagnose a wide variety of eye diseases, even before visual symptoms

appear.

There are many different types of optical retinal imaging devices, each allowing to

image different aspects of the retina. In this thesis we however limit ourselves to work
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1.1 Retinal Imaging

Figure 1.2: A scanning laser ophthalmoscopy camera (EasyScan, EasyScan B.V.).

with the 2D retinal images coming from the most used cameras in retinal imaging, which

are the color fundus (CF) camera and the scanning laser ophthalmic (SLO) camera.

An example of a SLO camera is given in Fig. 1.2. The main difference between CF

and SLO cameras is the light source used to image the retina; CF uses a white light

flash and SLO uses a coherent (laser) light source of which the wavelength is typically

tuned for optimal contrast between blood (vessels) and background pigmentation, see

for example Fig. 1.3. Also in large scale clinical studies and screening programs the

CF and SLO camera is the best choice due to its its low cost and non-invasive nature.

An interesting recent development is that such cameras are also more frequently used

outside clinical environments: they are also used in the optical retail market/optician

stores, serving as a convenient access point for screening and tele-diagnosis.

Retinal imaging devices have one specific property which makes them very special.

They are one of the very few tools available for direct and non-invasive imaging of the

humans circulatory system1 in vivo. This property makes that the clinical application

1Apart from the eyes, the only other place in the human body where the microvasculature

can be directly observed is at the base of the nails. Here the capillaries can be imaged via a

microscope and this imaging process is called nailfold capillaroscopy.
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1. CLINICAL BACKGROUND

Figure 1.3: The left image is obtained with a CF camera (Topcon NW200, Topcon

corp., Japan) by flashing a white light into the eye and measuring its reflectance, a pro-

cess much like normal photography. The right image is a pseudo color image obtained

with an SLO camera (Easyscan, EasyScan B.V., the Netherlands), obtained using two

laser light sources with wavelengths of 785nm (near infra red) and 532nm (green). Al-

though both camera-types image the same retinal structures, there are subtle differences

in the way the images look (e.g. appearance of the optic nerve head, contrast, and noise

characteristics), which have to be taken into account when analyzing the images.

Figure 1.4: From left to right a retina of healthy subject, a retina with diabetic

retinopathy, and a retina with increased vessel tortuosity of a patient with hyperten-

sion. The images are obtained with an SLO camera (EasyScan, EasyScan B.V., the

Netherlands) and show the green channel (532nm).
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1.2 Motivations for Retinal Vessel Analysis

area of retinal imaging is not only restricted to investigate and diagnose ocular diseases,

but more generally to the research of any (systemic) disease that has a vascular com-

ponent (see also Fig. 1.1). This property makes that retinal imaging is used in a wide

range of clinical studies that are aimed at finding associations with vessel parameters

(such as vessel caliber, tortuosity and bifurcation geometry) and systemic diseases. The

objective of such clinical research is typically twofold:

1. To obtain insight in how the micro-vasculature changes with progression towards

certain diseases.

2. To investigate the potential of screening and diagnosis of certain diseases via the

analysis of retinal blood vessels.

In this thesis we develop (semi-) automatic quantitative retinal image analysis algo-

rithms that can be used in large-scale clinical research programs and potentially for use

in (early diagnosis) screening programs. A summary of such clinical research programs

and their findings is given in Section 1.3. The kind of retinal image analysis algorithms

that are typically used in such studies are described in Section 1.4. But before we

continue, let us first summarize the main motivations for this thesis from a clinical

perspective.

1.2 Motivations for Retinal Vessel Analysis

While the retinal image analysis tools developed in this thesis are useful in a wide

range of (automated) retinal image analysis applications, the main focus of this work

is on the analysis of the retinal vasculature. As described in the previous section (and

in more detail in the upcoming Section 1.3), there are many diseases with a vascular

component that can be studied in the retina. Some diseases, e.g. diabetes mellitus

type 2 (DM2), might for example damage the vasculature to such an extent that the

vessels start to leak and cause bleedings. In the eye this is particularly troublesome as

this could eventually lead to blindness. Patients diagnosed with DM2 therefore have

a regular examination of their retinas in order to check if the disease has not yet lead

to diabetic retinopathy (damage to the retina due to DM2, see Fig. 1.4). If it has,

the patient needs to be referred for additional treatment. To reduce the workload of

clinical graders, and in order to perform large scale screening of DR for the prevention of

blindness, a branch of computerized retinal image analysis therefore focuses specifically

on the automatic detection of diabetic retinopathy.
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1. CLINICAL BACKGROUND

As with many diseases early diagnosis is crucial: the earlier a disease is detected,

the cheaper and more effective treatment typically is. Early detection and treatment

of diabetic retinopathy can for example reduce the risk of blindness by 95% NIH-

National Eye Institute (2015). Since leakage and bleeding of the blood vessels start with

changes and damage to the blood vessels Stewart (2010), it is relevant to investigate

whether or not (geometrical properties of) the retinal blood vessels can be used as

biomarkers for early diagnosis of diabetic retinopathy. Furthermore, if retinal vessel

analysis gains new insight in the diagnosis of prediabetes (a condition of elevated glucose

levels that could develop into DM2), the development into DM2 can even be prevented

all together due to timely treatment Tuomilehto et al. (2001). Currently, prediabetes

can be diagnosed using a fasting plasma glucose test and an oral glucose tolerance test,

which are both invasive (requires blood samples) and which both require the patient

to be in a fasting state. If the non-invasive analysis of retinal blood vessels, through

retinal imaging, provides new insight into the process of progression towards DM2

and diabetic retinopathy, this could be of great importance for cost-effective screening,

diagnosis, treatment monitoring and prevention of the disease.

Examples such as the previous motivate research groups to study the retinal vas-

culature:

1. Retinal vessel analysis allows for studying a wide range of diseases and medical

conditions. Retinal imaging allows to observe living tissue, including the circu-

latory system. As there are many (systemic) diseases and conditions that affect

the vascular network, research using retinal imaging is not limited to the study

of ocular diseases alone, but includes more generally the study of diseases with

a vascular component, see for example studies on the retinal vasculature in as-

sociation with diabetes mellitus Cheung et al. (2012), hypertension Ikram et al.

(2006b), Alzheimer’s disease Williams et al. (2015) and stroke Wong et al. (2001).

2. Retinal vessel analysis could provide means for non-invasive early diagnosis of

diseases. Many severe complications, like for example diabetic retinopathy, start

with damage to the vascular network Stewart (2010). If early alterations of the

vascular network could be recognized in the retina, diseases might be detected

in an early stage before severe complications take place. In particular the use of

invasive screening methods, such as the fasting plasma glucose (FPG) test, which

requires overnight fasting and a blood draw (e.g. taking blood samples), seems

unnecessarily uncomfortable to (possibly healthy) subjects. Research in retinal

vascular analysis could lead to reliable non-invasive screening methodologies.
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1.3 Research on the Retinal Microvasculature

3. Retinal imaging is a non-invasive method with presence in both clinical and com-

mercial environments. In addition to the non-invasive nature of retinal imaging

(item 2), the presence in both clinical and commercial environments (e.g. optical

retail shops) seems to make retinal imaging devices ubiquitous. As such, retinal

imaging is a convenient access point for disease screening and health monitoring.

4. Both clinical research and screening programs need to deal with large quantities

of images. Computerized algorithms can assist researchers and clinical graders

to deal with large amounts of data via the (semi-) automatic analysis of retinal

images. Other studies have shown that such computer assistance can reduce

costs while maintaining similar grading performance to that of manual labor

Bojke et al. (2008); Fleming et al. (2007); Olson et al. (2003); Scotland et al.
(2007).

5. Both clinical research and screening programs need to deal with quantification of

observations. Properties of the retinal vasculature (e.g. the size of arteries or

the tortuosity/curvature of veins) need to be quantified in order to have objective

observations, human experts are not good at this. Such quantification can be

done reliably, efficiently and objectively using computerized retinal image analysis

algorithms.

1.3 Research on the Retinal Microvasculature

There is growing evidence that variations in retinal vessel geometry (e.g., vessel caliber

and tortuosity) are associated with a range of systemic conditions and diseases. Re-

search that studies such associations is typically done using cross-sectional studies, i.e.,

studies that involve the analysis of data collected from a population (usually consisting

of certain patient groups and a control group) at a certain point in time. Cross-sectional

studies are a category of epidemiological studies, i.e., the study and analysis of pat-

terns, causes, and effects of health and disease conditions in defined populations. A

good introduction to different types of epidemiological studies is given in Mann (2003).

Cross-sectional studies involving the analysis of the retinal vasculature have so

far primarily focused on studying retinal vessel caliber in association with systemic

diseases like hypertension Hubbard et al. (1999); Ikram et al. (2006b); Leung et al.

(2003); Mitchell et al. (2007); Sun et al. (2009); Taarnhøj et al. (2006); Wang & Wong

(2006); Wong et al. (2003) and diabetes mellitus Cheung et al. (2015); Nguyen et al.

(2007); Sabanayagam et al. (2015); Wong et al. (2002, 2005). More recently, studies
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1. CLINICAL BACKGROUND

have also focused on geometrical properties of the vasculature that are more complex

to quantify, such as vessel tortuosity Cheung et al. (2011b); Han (2012); Hughes et al.

(2006); Owen et al. (2008); Sasongko et al. (2015); Wu et al. (2013); Zhu et al. (2014)

and fractal dimension Aliahmad et al. (2014); Broe et al. (2014); Cheung et al. (2011a);

Grauslund et al. (2010); Huang et al. (2015); Yau et al. (2010).

In the upcoming subsections we provide a condensed overview of the current knowl-

edge on how retinal vessel properties are associated with certain diseases and medical

conditions. Here we restrict our summary to the most studied diseases (hypertension

and diabetes), and the most studied vessel features (vessel caliber and tortuosity) in

the context of retinal vessel research.

In this thesis we developed a novel method for direct analysis of vessel tortuos-

ity (Subsec. 3.6 and Chapter 11), see e.g. Fig. 1.5. The method relies on analysis

of so-called orientation scores (explained in Chapter 2) rather than the 2D images,

allowing us to directly compute tortuosity related features without the need of prior

vessel segmentation. We used this tool in two populations studies to investigate how

our developed tortuosity measure is associated with respectively diabetes mellitus and

hypertension. In the first study healthy subjects are compared against patients with

different types of diabetes. In this dataset 1,574 subjects were included. In the second

study healthy subjects are compared to patients with hypertension. In this dataset 421

subjects are included. In the following subsections we will indicate how our findings

relate and contribute to the literature, full details will be provided in Chapter 11.

Remark 1. When studying the association of geometrical retinal vessel properties with

certain diseases or health conditions, one has to take confounding variables into ac-

count. A confounding variable is a variable which correlates with both the dependent

parameter of interest (e.g. vessel caliber) and the independent parameter (e.g. blood

pressure). Such confounding variables need to be corrected for in order not to draw

incorrect conclusions. For example, vessel caliber is known to change with age, and if

one finds that patients with high blood pressure have smaller blood vessels, one wants

to make sure that this is not due to the fact that this patient group contains more

elderly people. I.e., one wants to correct for the confounding effect of age. The conclu-

sions summarized in Subsec. 1.3.2 and 1.3.3 include such corrections. In Subsec. 1.3.1

we briefly discuss the two most encountered confounding parameters in retinal vessel

research.
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1.3 Research on the Retinal Microvasculature

Figure 1.5: A fundus image with low vessel tortuosity from a healthy volunteer (a),

and an image with high vessel tortuosity from a diabetic patient (c). Figures (b) and (d)

show the responses of the curvature filter developed in Chapter 11. The filter assigns

to every pixel a curvature value, here color coded (blue/purple is low curvature, red is

high curvature), and a vessel confidence. The confidence value at each pixel is used

to weigh the corresponding curvature value when computing global tortuosity measures

(for details see Chapter 11).
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1. CLINICAL BACKGROUND

1.3.1 Age and Gender

The human circulatory system changes with age, and this can be observed in the retina.

A large amount of cross-sectional studies uniformly demonstrates that the retinal blood

vessel’s cross-sections decrease in size with increasing age, see Sun et al. (2009) and

references therein. In a lesser number of publications, and with less agreement among

them, vessel tortuosity is also associated with older age. In contrast to Cheung et al.

(2011b); Wu et al. (2013) where a decrease in tortuosity is reported to be associated

with older age, Han (2012) reports an increase of tortuosity with age.

Literature also reports anatomical differences between males and females: the reti-

nal blood vessels of females are generally more tortuous than those of males Cheung

et al. (2011b); Wu et al. (2013); Zhu et al. (2014). Generally the arteriolar vessel caliber

in females is found to be larger than those in males, see Sun et al. (2009) and references

therein.

Our findings. In our two studies on retinal tortuosity we generally found that

lower vessel tortuosity is associated with increasing age. Our results also indicates a

higher tortuosity in females compared to males. For full details see Subsec. 11.5.2 and

11.5.3.

1.3.2 Hypertension

Hypertension is a long term medical condition in which the arterial blood pressure is

persistently elevated. It is generally found that a decrease in retinal vessel caliber is

associated with an increase in blood pressure, see Sun et al. (2009); Zhu et al. (2014) and

references therein. While not all studies find a significant decrease in venular diameter,

the arteries are in all studies found to decrease in size. Regardless of whether or not the

veins decrease in size, the arteriolar to venular width ratio (AVR) is consistently found

to be smaller in patients with hypertension. Interestingly, these findings seem also to be

the case for both current hypertension and past hypertension. This suggest that retinal

arteriolar caliber changes reflect persistent damage from long-term hypertension.

An increase in tortuosity is also found to be associated with increased blood pressure

Cheung et al. (2011b); Han (2012); Hughes et al. (2006); Owen et al. (2008). In Han

(2012) a comprehensive overview is provided of a wide range of medical conditions that

lead to an increase of tortuosity in blood vessels in each part of the body. It is generally

found that hypertension increases the tortuosity specifically of the arteries, and to a

lesser extent of the veins Han (2012); Owen et al. (2008). In Cheung et al. (2011b);

Hughes et al. (2006) it is however the venular tortuosity that is found to be increased
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1.4 Retinal Image Analysis Algorithms

in hypertensive patiens.

Our findings. In our clinical study (which will be presented in Ch. 11) we found

that higher vessel tortuosity is significantly associated with the status of hyperten-

sion. We also show that this association is mainly caused by an increase in arteriolar

tortuosity. For full details see Subsec. 11.5.2 and 11.5.3.

1.3.3 Diabetes Mellitus

Also in diabetes research vessel caliber is the most studied geometric retinal vessel

parameters. Here a decrease in AVR is found to be associated with several types of

diabetes Ikram et al. (2006a); Klein et al. (2003); Sun et al. (2009); Wong et al. (2004,

2006). However, in contrast to hypertension, this decrease in AVR is not explained by

a relative decrease in arteriolar caliber, but rather by an increase in venular caliber.

Both an increase in arteriolar and venular caliber is associated with diabetes, and the

increase in venular caliber is bigger than that of the arteries.

Although there is increasing evidence that an increase in vessel tortuosity is asso-

ciated with diabetes melitus type 2 and progression towards diabetic retinopathy, in

literature there seems to be no consensus on the topic yet. Cheung et al. Cheung et al.

(2012) for example have found a negative association of tortuosity (straighter vessels)

with diabetes, whereas Sasongko et al. Sasongko et al. (2015) have found a positive

association (more curved vessels) with diabetes. In Sasongko et al. (2015) it is sug-

gested that this inconsistency could be due to the duration of diabetes of the patients

involved: it could be that an increase in tortuosity only occurs after long exposure (over

10 years) to diabetes. In another recent study Weiler et al. (2015) the authors found a

positive association of arterial tortuosity with diabetic retinopathy. In a smaller study

(30 subjects) it was found that average tortuosity was 26% higher in patients with

diabetes type 2, compared to healthy controls Tam et al. (2011).

Our findings. In our clinical study we found higher vessel tortuosity in DM2

patients in comparison to healthy subjects, increasing with the development stages of

the disease. Here the difference between arteries and veins was not investigated. For

full details see Subsec. 11.5.2 and 11.5.3.

1.4 Retinal Image Analysis Algorithms

Retinal image analysis involves a wide variety of algorithms (Fig. 1.6), and can roughly

be categorized in the following: anatomical landmark detection, vessel segmentation,
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vessel tracking, lesion segmentation, junction detection and biomarker extraction. In

this thesis we have developed algorithms in all of the aforementioned categories except

for lesion segmentation. The developed algorithms are summarized in Chapter 3 and

are all based on a shared image processing framework (Chapter 2): image analysis

via invertible orientation scores. For a condensed overview of the methods developed

in this thesis and other methods developed within the RetinaCheck project, of which

the work described in this thesis is part of, see ter Haar Romeny et al. (2016). In

the following subsections we briefly describe the different categories of retinal image

analysis algorithms.

1.4.1 Anatomical Landmark Detection (Ch. 5)

At the core of any retinal image analysis system is the detection of the anatomical

landmarks. In the retina, the main anatomical structures are the optic nerve head,

the fovea and the blood vessels (cf. Fig. 1.3). Of these, the optic nerve head and

the fovea (Fig. 1.6(a)) are considered the key anatomical landmarks. Clinical studies

typically make use of standardized measurement protocols in which the measurements

(e.g. microaneurysm count, or vessel width analysis) are performed in fixed regions of

interest that are specified relative to the landmark locations (see e.g. Fig. 1.6(h)). Also

in other retinal image processing modules these landmarks play a crucial role. E.g.,

vessel tracking algorithms, such as the one developed in this thesis (Chapter 7), are

typically initialized in the region around the optic nerve head (Fig. 1.6(d)).

1.4.2 Retinal Vessel Segmentation (Ch. 6)

Retinal vessel segmentation is the process of producing binary maps that label each

pixel as either vessel or background (Fig. 1.6(b)). Vessel segmentations are mostly

used as a starting point for the construction of models of the retinal vasculature, as

a reference structure relative to which other processes are performed (such as lesion

segmentation), or as a direct format for the analysis of retinal vascular properties (e.g.

fractal analysis).

Vessel segmentation algorithms are typically divided into supervised, non-supervised

and tracking methods. Both supervised and non-supervised methods perform pixel-wise

labeling of the pixel into the vessel or background category. Supervised methods require

training data (manual segmentations of blood vessels) to train a system to recognize a

pixel as belonging to a blood vessel. Non-supervised methods do not require training

data and typically rely on differentio-geometrical processing. Vessel tracking methods
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Figure 1.6: An overview of different types of retinal image analysis algorithms and

their connection to the chapters of this thesis.
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iteratively expand a connected model of the vasculature, starting from detected seed

points (typically around the optic nerve head).

1.4.3 Retinal Vessel Modeling (Ch. 7, 8 & 9)

Iterative Tracking Vessel tracking is the process of constructing (parametric) mod-

els of the vasculature (Fig. 1.6(d)). Here we make a distinction between single vessel

models, and full vasculature models. A single vessel model consists of parameterization

of a single blood vessel, e.g., an ordered sequence of centerline coordinates or a sequence

of paired vessel edge coordinates, possibly accompanied with a labeling of the vessel

being artery or vein (Fig. 1.6(e)). A full vasculature model is a collection of such single

blood vessel models together with a structure that describes the relations between those

blood vessels, e.g., parent-child relations between bifurcating blood vessels.

From Segmentation to Model An alternative approach to the construction of

models of the retinal vasculature is by taking pixel-wise vessel segmentation as a starting

point. A set of single vessel models is than typically constructed by computing a

skeleton from the binary segmentation, and splitting the skeleton at junction points

(locations where multiple vessel segments meet). The construction of a full model of

the vasculature (including parent-child relations) is then more difficult. This requires

first the identification of junction points, and then establishing relations between the

segments (junction resolving). Establishing the relations between vessel segments is

typically done by either resolving each junction separately or simultaneously in a graph

optimization approach.

1.4.4 Lesion Segmentation

Lesion segmentation is the process of recognizing pathological regions in the retina and

labeling them as such (Fig. 1.6(g)). The automatic and robust detection of lesions (such

as micro-aneurysms and drusen) is of great importance since lesions directly threaten

vision by damaging the retina. Diabetic retinopathy (DR) and age related macula

degeneration (AMD) are two of the most occurring sight threatening pathologies, and

are heavily characterized by the presence of respectively red lesions (such as micro-

aneurysms and hemorrhages) and white lesions (such as drusen).
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1.4.5 Feature/Biomarker Extraction (Ch. 10, 11 & 12)

The main goal of almost any retinal image analysis system is the extraction of retinal

biomarkers, i.e., the computation of objective measurements (such as the quantification

of vessel curvature, see Fig. 1.6(f)) from retinal image data which can be used to

quantify the health condition of a person. In the case of DR and AMD a count of

the number of lesions inside certain regions of interest quite directly describes the

state of these diseases International Council of Ophthalmology (2014); Klein et al.

(1991); Wilkinson et al. (2003). Measurements of the retinal vasculature have a less

straightforward relation with disease progression, but can be regarded as biomarkers

nevertheless. E.g., as described in the previous Subsec. 1.3 venular widening relative

to the arteries is an indicator of diabetes and diabetic retinopathy.

The computation of retinal biomarkers typically involves a pipeline composed of a

large set of (interdependent) processing modules, such as the ones described in the pre-

vious subsections. One particularly important component of a vessel based biomarker

extraction pipeline is that of artery/vein classification (Fig. 1.6(f)). Arteries and veins

behave differently under pathological conditions. As such, it is important to define and

study biomarkers separately for arteries and veins.
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2. TECHNICAL BACKGROUND

Retinal image analysis via orientation scores is a major theme in this thesis. In

this section we aim to familiarize the reader with the concept of an orientation score,

and we motivate why it is important (and convenient) to resort to group theory in the

processing of orientation scores.

2.1 Invertible Orientation Scores

2.1.1 What are Orientation Scores?

An orientation score Uf is a function on the space of positions and orientations

R2 × S1, and can be obtained from an image f via a wavelet type transform Kalitzin

et al. (1999); Duits (2005); Duits et al. (2007a,b); Franken & Duits (2009). In this

transformation, orientation sensitive filters ψθ are used that filter the image at different

orientations. These anisotropic filters, which we will discuss soon in Subsec. 2.1.5,

respond well in the presence of structures that match the filter’s orientation, and do

not or hardly respond to structures perpendicular to it. In this sense, the filters “score”

the local presence of oriented structures, and it is indeed the full stack of filter responses

that we call an orientation score. Consider to this end the top row of figures in Fig. 2.1.

In Subsec. 2.1.4 we provide details on the construction of orientation scores. First, we

provide a motivation for using orientation scores in image analysis.

2.1.2 What is the Motivation for Using Orientation Scores?

In an orientation score a full range of orientations are represented at each location, and

it is precisely this property that makes the use of orientation scores in image processing

attractive. In image processing one often encounters crossing structures. These cross-

ings either disturb the processing pipeline, e.g., in the 2D vesselness filter Frangi et al.

(1998) or in anisotropic diffusions (e.g., with adaptive scalar diffusivity Perona & Ma-

lik (1990), adaptive matrix-valued diffusion tensors Weickert (1999); Scharr (2006)), or

adaptive metric diffusivity Sochen et al. (1998)), or require special attention to be dealt

with appropriately. In an orientation score however, crossings no longer exist as they

are manifestly disentangled on the basis of their local orientations. In the score, due

to the extra dimension we can now accommodate multiple orientations in one spatial

position. See Fig. 2.1 and Fig. 2.2C for an illustration. As shown in this thesis with

multiple applications in retinal image analysis, this neat organization of image data in

orientation scores allows for the construction of both effective and fast algorithms.

Interestingly, such an organization of visual data based on position and orientations
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2.1 Invertible Orientation Scores

Figure 2.1: An orientation score can be constructed by filtering an image with a set of

rotated anisotropic filters ψθ. The top row shows two of such rotated filters ψθ and their

responses on the input image. In an orientation score Uf , obtained via the orientation

score transform Wψ, such responses are “stacked” on top of each other. Using so-called

cake-wavelets (to be explained in Sec. 2.1.5) for ψ one obtains an invertible orientation

score transformation Wψ, for which a stable inverse transformation W∗ψ exists: one can

reconstruct the image from the orientation score without loss of information.
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also seems to take place in the visual system of higher mammals. Hubel & Wiesel

(1959) showed that the visual cortex in the mammalian brain contains so-called simple

cells, whose receptive fields are tuned to various locations and orientations (Fig. 2.2A).

They showed by tangential electrode tracking that the orientation preference of simple

cells gradually varies across the surface of the primary visual cortex. The use of optical

imaging techniques later showed that assemblies of oriented receptive fields are grouped

together in pinwheel-like structures Bonhoeffer et al. (1991), known as the orientation

preference structure, see Fig. 2.2B. The orientation preference structure is a mapping

of the 3D space of positions and orientations R2 × S1 onto the 2D surface of the

primary visual cortex. Due to the difference in dimensionality the orientation preference

structure is formed by a tessellation of pinwheels, of which the centers form singularities

Ohki et al. (2006). In an orientation score we also obtain a decomposition of visual

data into localized oriented responses, and similar to a pinwheel region on the visual

cortex a single column of orientations in the score (see Fig. 2.2C) encodes for all possible

orientations at that location.

While the previous paragraph only motivates the use of a data representation on

the space of positions and orientations, the neurophysiology of vision also motivates

the use of a sub-Riemannian geometry on this domain. Synaptic physiological studies

of the horizontal pathway (neuronal connections parallel to the cortical surface) in

the visual cortex of tree shrews show that neurons with aligned receptive fields excite

each other Bosking et al. (1997). Apparently the visual system not only constructs

a score of local orientations, it also accounts for context and alignment by excitation

and inhibition. Petitot showed that the horizontal connections of primary visual cortex

implement the (sub-Riemannian) contact structure of a continuous fibration with base

space the retinal area (i.e. the space R2) and a projective line of orientations (i.e. the

space S1) Petitot (2003). A refinement of this model on the roto-translation group

was proposed by Citti & Sarti Citti & Sarti (2006). Subsequently, Boscain & Duits

& Sachkov derived its optimal solutions in Boscain et al. (2014); Duits et al. (2013a)

and related it to a mechanical problem for which optimal synthesis was obtained by

Sachkov Sachkov (2010).

We take inspiration by the superior pattern recognition capabilities of the human

brain and recent insights on how this is accomplished Fregnac & Shulz (1999); Petitot

(2003), and rely on a novel operator design aiming at better results than would be

obtained by conventional 2D image processing. This novel operator design combines

(partial) differential equations on Lie groups (induced by stochastic processes and sub-

Riemannian geometric control) with continuous wavelet transforms. More precisely, in
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2.1 Invertible Orientation Scores

Figure 2.2: A: A receptive field of a sensory neuron describes the pattern of input

stimuli that activates a response of that neuron. At a very low level in the visual

pathway, the output of photo-receptors in the retina is combined into isotropic center-

surround receptive fields of ganglion cells. As such, the ganglion cells encode locally for

contrast (analog to the pixels a 2D image). The outputs of ganglion cells are combined

to form the receptive fields of simple cells, which respond to oriented line stimuli and

encode for both position and orientation (similar to the voxels in an orientation score).

B: The simple cells are neatly organized on the surface of the primary visual cortex

and the orientation preference map of simple cells contains pinwheel structures. These

pinwheel regions encode all orientations at a certain spatially localized area (and have

singularities at the very center). [Illustration adapted from O’Reilly et al. (2012)] C:

In an orientation score we obtain a similar organization of visual data, however now

as a 3D object instead of a 2D surface.
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2. TECHNICAL BACKGROUND

this PhD thesis we focus on new mathematical, computational, sub-Riemannian tech-

niques with applications to retinal imaging. Although we do take great inspiration from

visual cortex modeling, we do not claim to model the rather complex visual system of

mammals, as this would require verification by neurophysiological and neuropsycholog-

ical experiments which is clearly outside our general research scope.

2.1.3 Why Call Them Orientation Scores?

With respect to the naming of orientation scores as such, one might also appreciate the

analogy to musical scores: In a musical score a certain melody is represented along a

time axis, and the axis perpendicular to it encodes pitch (the axis along which notes can

be placed). Such musical notation allows for multiple pitches at a certain point in time

(e.g., as is the case with harmonies and chords). In fact, this kind of time-frequency

decomposition is reflected in a Gabor transform Gabor (1946); Helstrom (1966). In

the analysis of Gabor transforms one can employ the Heisenberg group structure by

left-invariant processing Duits et al. (2013b); Gröchenig (2001). In this case one must

take into account an extra phase factor in the short time Fourier transform Allen (1977)

in order to obtain a transform of the type g 7→ (Ugψ, f)L2(R2) with U the Schrödinger

representation on the Heisenberg group.

In general we call G 3 g 7→ (Ugψ, f)L2(R2) the score of image f with respect to the

Lie group G, and U a certain representation of the group. A special case arises when

U is the Schrödinger representation, in which case the score is a Gabor transform. If U
is the left-regular representation (cf. Subsec. 2.3) of the roto-translation group SE(2)

(i.e. rotation and translation) the score is an orientation score. If U is the left-regular

representation of the similitude group SIM(2) (i.e. rotation, translation and scaling)

the score is a continuous wavelet transform. In all of these cases we want to employ

the geometry and the intrinsic structure that lives in the domain of the scores, which is

reflected by the group structure. It is therefore inevitable that we resort to Lie group

theory in the analysis of orientation scores. The very basics of group theory will be

introduced in Subsec. 2.2, and what it means to rely on Lie group theory in our analysis

of orientation scores will be discussed in Subsec. 2.3. In Chapter 3 we then go through

the applications developed in this thesis and briefly discuss how Lie group analysis

contributes to state-of-the-art performance of the methods. However, before we go

there, let us first focus on some practical aspects and address the following questions

in the upcoming subsections:

• How do we construct an orientation score? (Subsec. 2.1.4)
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2.1 Invertible Orientation Scores

• What kind of wavelets can we use to construct an orientation score? (Sub-

sec. 2.1.5)

• Why do we need group theory in the processing and analysis of orientation scores?

(Subsec. 2.1.6)

2.1.4 How is an Orientation Score Constructed?

Consider a 2D image f as a function f : R2 → R, with compact support on the image

domain Ω = [0, X] × [0, Y ], with image dimensions X,Y ∈ R+, and which we assume

to be square integrable, i.e. f ∈ L2(R2). An orientation score, constructed from image

f , is defined as a function Uf : R2×S1 → C and depends on two variables (x, θ), where

x = (x1, x2) ∈ R2 denotes position and θ ∈ [0, 2π] denotes the orientation variable.

An orientation score Uf of a function f can be constructed by means of convolution

with some anisotropic filter ψ via

Uf (x, θ) :=Wψf = (ψ̌θ ∗ f)(x) =

∫
R2

ψ(R−1
θ (y − x))f(y)dy, (2.1)

where ψ ∈ L1(R2)
⋂

L2(R2) is the anisotropic convolution kernel oriented along the x-

axis which we identify with θ = 0, and where Wψ denotes the transformation between

image f and orientation score Uf . The overline denotes complex conjugation, ψ̌θ(x) :=

ψθ(−x), and the rotation matrix Rθ is given by

Rθ =

(
cos θ − sin θ

sin θ cos θ

)
, (2.2)

see Fig. 2.1.

Exact reconstruction1 from the orientation scores constructed by (2.1) is given by

f =W∗ψWψf

= F−1
[
M−1
ψ F

[
x 7→ 1

2π

∫ 2π
0 (ψθ ∗ Uf (·, θ))(x)dθ

]]
,

(2.3)

where F is the unitary Fourier transform on R2, whereW∗ψ denotes the adjoint wavelet

transformation (see Duits (2005) for details), and Mψ : R2 → R+ is calculated by

Mψ = 2π

∫ 2π

0
F [ψθ]F [ψθ]dθ = 2π

∫ 2π

0
|F [ψθ]|2dθ. (2.4)

1The reconstruction formula can easily be verified using the convolution theorem, F [f ∗g] =

2πF [f ]F [g], and the fact that F
[
ψ̌θ

]
= F [ψθ].

25



2. TECHNICAL BACKGROUND

Figure 2.3: (a) Plots of MN

(
ρ2/t

)
(cf. Eq. (2.6)), with t =

2(γ%)2

1 + 2N
for N = 5,

10, 15, 20, 25. (b) The use of B-splines in the construction of cake wavelets. The

plot shows quadratic B-splines (k = 2); the sum of all shifted B-splines adds up to 1.

The image in the upper right corner illustrates a Fourier cake wavelet ψ̃cake constructed

using quadratic B-splines and MN with N = 60, according to Eq. (2.8).

The function Mψ provides a stability measure of the inverse transformation. Theoreti-

cally, reconstruction is well-posed, as long as

0 < δ < Mψ(ω) < M <∞, (2.5)

where δ is arbitrarily small, since then the condition number of Wψ is bounded by

M δ−1, see (Duits, 2005, Thm. 20).

Remark 2. If we do not restrict ourselves to band-limited/disk-limited functions, this

requirement (Eq. (2.5)) bites the assumption ψ ∈ L1(R2)
⋂
L2(R2) since it implies

F [ψ] is a continuous function vanishing at infinity (see e.g. Rudin (1973)) and so is

Mψ. In that case we have to resort to distributional wavelet transforms1 whose closure

is again a well-defined unitary map from L2(R2) into a reproducing kernel subspace

of L2(R2 × S1), for details see (Bekkers et al., 2014a, App. B). So in principle our

restriction to band-limited images is convenient, but not necessary.

In practice, to prevent numerical problems, it is best to aim at Mψ(ω) ≈ 1 for

‖ω‖ < %, where % is the Nyquist frequency of the discretely sampled image, meaning

that all relevant frequency components within a ball of radius % are preserved in the

1This is comparable to the construction of the unitary Fourier transform F : L2(R2) →
L2(R2) whose kernel k(ω,x) = e−iω·x is also not square integrable.
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2.1 Invertible Orientation Scores

same way. Because of the discontinuity at ‖ω‖ = %, which causes practical problems

with the discrete inverse Fourier transform, we will use wavelets ψ, with Mψ(ω) =

MN

(
ρ2t−1

)
, N ∈ N, t > 0 and ρ = ‖ω‖ where

MN

(
ρ2t−1

)
= e
−
ρ2

t
N∑
k=0

(
ρ2t−1

)k
k!

≤ 1, (2.6)

where t denotes a scale parameter. To fix the inflection point close to the Nyquist

frequency, say at ρ = γ% with 0� γ < 1, we set t =
2(γ%)2

1 + 2N
(to fix the bending point:

d2

dρ2
MN (ρ2t−1)|ρ=γ% = 0, see Fig. 2.3a). The function MN basically is a Gaussian

function at scale t, multiplied with the Taylor series of its inverse up to a finite order

2N to ensure a slower decay. The functionMN smoothly approximates 1 on the domain

ρ ∈ [0, %], see Fig. 2.3a. A wavelet ψ : R2 → C with such a Mψ will be called a proper

wavelet.

2.1.5 What Kind of Wavelets Can Be Used?

As explained in the previous section, orientation scores are constructed using anisotropic

filters. In this thesis we consider two types of such anisotropic filters: cake wavelets1

and Gabor wavelets.

Cake Wavelets Cake wavelets are constructed from the Fourier domain. By using

polar coordinates, the Fourier domain can be uniformly divided into No equally wide

samples (”pieces of cake”) in the angular direction, see Fig. 2.3b. The spatial wavelet

is given by

ψcake(x) = F−1[ψ̃cake](x)Gσs(x), (2.7)

where Gσs is a Gaussian window, with 1 � σs, that is used to avoid long tails in the

spatial domain. Note that multiplication with a large window in the spatial domain

corresponds to a convolution with a small window in the Fourier domain, such that Mψ

is hardly affected with σs sufficiently large. Function ψ̃cake is given by

ψ̃cake(ω) =

(
Bk

(
(ϕ mod 2π)− π/2

sθ

))ν
(MN (ρ))

1
2 , (2.8)

1The cake wavelets ψ are not continuous mother wavelets (for the similitude group SIM(2))

in the classical sense, instead they carry all scales simultaneously. Nevertheless, they can still

be called wavelets (for the group SE(2)).
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2. TECHNICAL BACKGROUND

with ω = (ρ cosϕ, ρ sinϕ), where sθ = 2πN−1
o is the angular resolution in radi-

ans, and with ν ∈ {1
2 , 1} a design parameter. Default we set ν = 1

2 such that∑No−1
i=0 |ψ̃cake(R(isθ)ω)|2 = MN (ρ). The function Mn specifies the radial function

in the Fourier domain given by (2.6). Bk denotes the kth order B-spline given by

Bk(x) = (Bk−1 ∗B0)(x),

B0(x) =

{
1 if −1/2 < x < +1/2

0 otherwise
.

(2.9)

Orientation scores constructed from an image f using cake wavelets are denoted by

U cakef .

The approach of constructing wavelets directly from the Fourier domain allows

indirect control over the spatial shape of the filter, and it can easily be adapted. For

example, the number of orientations No specifies the angular resolution sθ: If No is

large, the resolution in the orientation dimension is large and the filters become very

narrow. This is illustrated in Fig. 2.4. The cut-off frequency (at the inflection point)

of the functionMn, which is usually set as the Nyquist-frequency, could be lowered to

filter out high-frequency noise components.

Moreover, because B-splines and the function Mn are used to sample the Fourier

domain, the sum of all cake wavelets is approximately 1 over the entire Fourier domain

(within a ball of radius γ%), see Fig. 2.3 and 2.4. Thus the cake wavelets indeed are

proper wavelets, allowing a stable reconstruction via Eq. (2.3). Furthermore, because

the cake wavelets uniformly cover the Fourier domain (MN ≈ 1), when setting ν = 1

one can omit the extra convolution with ψθ in (2.3) and omit division by M−1
ψ ≈ 1 in

order to obtain a fast approximate reconstruction, which is given by integration of the

orientation scores over the angles only:

f(x) ≈
1

2π

∫ 2π

0
U cakef (x, θ)dθ, (2.10)

for details see Duits (2005). I.e., for low order B-splines |ψθ(ω)|2 ≈ |ψθ(ω)| and the

choice of ν is not crucial.

Cake wavelets are quadrature filters, meaning that the real part contains infor-

mation about the locally even (symmetric) structures, e.g. ridges, and the imaginary

part contains information about the locally odd (antisymmetric) structures, e.g. edges.

That is, the real and imaginary part of the filter ψθ are related to each other by the

Hilbert transform in the direction perpendicular to the wavelets orientation, which is

defined by

Hη(ψθ)(x) = F−1[ω 7→ i sign( ωT · eη(θ) )F [ψθ](ω)](x), (2.11)
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2.1 Invertible Orientation Scores

Figure 2.4: Overview of the wavelets used in this thesis. From left to right: the real

and imaginary parts of the wavelet in the spatial domain (zoomed by a factor of 8 for

the sake of visualization), the wavelet in the Fourier domain and an illustration of the

Fourier domain coverage by the filters where contours are drawn at 80% of the filter

maximum. Note that this last figure also gives an impression of Mψ. The top row shows

the cake wavelet constructed using No = 36, middle row with No = 12 and the bottom

row shows the Gabor wavelet at scale a = 6/π and No = 36.
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where eη(θ) = (− sin θ, cos θ)T specifies the direction in which the Hilbert transform is

performed. In Chapter 7 we make use of this quadrature property for vessel tracking

in orientation scores; the quadrature property allows us to directly detect vessel edges

from the imaginary part of the orientation scores, without having to calculate first-order

derivatives perpendicular to the vessel orientation.

Remark 3. If No → ∞ then ψ̃cake → δy0 in the distributional sense. In this case the

wavelet transform converges to the localized Radon transform, which has been proposed

for effective retinal vessel detection in Krause et al. (2013). The advantage however

of taking N0 � ∞ is that we obtain non-singular kernels in the spatial domain while

allowing a stable reconstruction for all a-priori set No ∈ N.

Gabor Wavelets are directional wavelets, and can be tuned to specific spatial

frequencies (and inherently scales). In the field of retinal image processing they are

used for vessel detection in various studies Li et al. (2006); Soares et al. (2006). We

can exploit the tuning of the wavelet to specific spatial frequencies to match differently

sized blood vessels. The 2D Gabor wavelet is a Gaussian, modulated by a complex

exponential, and is defined as:

ψGabor(x) =
1

Cψ
eik0x e

−
1

2
|Ax|2

,

Cψ = 2π
√
ε e
−

1

2
|A−1k0|2

,

(2.12)

where A = diag[ε−1/2, 1] with ε ≥ 1 is a 2×2 diagonal matrix that defines the anisotropy

of the wavelet. The vector k0 defines the spatial frequency of the complex exponential

and Cψ normalizes the wavelet to unity. In our method we use ε = 4, which makes the

filter elongated in the x-direction and we choose k0 = (0, 3)T , which causes oscillations

perpendicular to the orientation of the wavelet. We can dilate the filter by a scaling

parameter a > 0:

ψGabora (x) := a−1ψGabor(a−1x). (2.13)

Orientation scores constructed from an image f using Gabor wavelets at scale a are

denoted by UGaborf,a .

The real and imaginary part of the wavelet in the spatial domain, as well as the

coverage of the wavelet in the Fourier domain are shown in Fig. 2.4. Similar to the

cake wavelets, Gabor wavelets also have the quadrature property orthogonal to their

orientation.
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2.1 Invertible Orientation Scores

In the Fourier domain, the Gabor filters are represented as Gaussian functions

shifted from the origin by k0. The set of all rotated Gabor functions at a certain scale

a covers therefore a certain annulus in the Fourier domain, and a single Gabor wavelet

can thus be regarded as an oriented band-pass filter. This is also clearly depicted by

the outlines of the frequency responses as shown in Fig. 2.4.

Remark 4. In our applications we remove the DC-component to avoid responses for the

real part of the wavelets on locally constant images. In order to remove this smoothly,

and in order to remove low-frequency fluctuations, we apply the transform f 7→ f−Gσs∗
f , with Gσs a 2D Gaussian and with σs � 0 sufficiently large (typically we set 2σs = N

2

on N ×N images). I.e., in the Fourier domain we apply f̃ 7→ (1− e−
1
2
σ2
s |ω|2)f̃ before

applying Wψ. This is also commonly done in continuous wavelet transforms Mallat

(1999).

2.1.6 Why Do We Need Group Theory and Sub-Riemannian

Geometry?

In this section we first motivate whey we need group theory in the processing and

analysis of orientation scores. Then, we explain the basics of group theory in Subsec. 2.2,

after which in Subsec. 2.3 we will finally introduce the Lie group of interest: the roto-

translation group SE(2).

The fact that orientation scores are constructed via translations and rotations of

oriented wavelets actually quite naturally brings us the notion of a group structure on

the domain of an orientation score, namely that of the roto-translation group SE(2).

Indeed, every location (x, θ) in the domain of an orientation score (x, θ) 7→ Uf (x, θ) is

associated with a rotation (by θ) and translation (by x) of an anisotropic wavelet ψ.

But we also recognize a curved geometry in orientation scores: notions of alignment

and distance seem to change depending on location and orientations (see for example

Fig. 2.1 where we see that a planar circle becomes a spiral in the orientation score).

The group SE(2) is responsible for this curved geometry, and allows us to quantify

this notion of alignment in terms of sub-Riemannian distances on the group SE(2).

What is exactly meant by sub-Riemannian distances will become clear in Ch. 4. For

now let us stick with intuition and first make some observations on orientation scores

and their domain. Below we list these observations and we will identify the relevant

relations to group theory without going into full details. Full details will follow later

in the subsequent Subsections 2.2 and 2.3 and Part II of this thesis.
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Figure 2.5: Even though the spatial and angular distances between (x1, θ1) and (x0, θ0)

are the same as the spatial and angular distances of (x2, θ1) with (x0, θ0), our perception

is that the green arrow (x2, θ1) is more aligned with (x0, θ0). The left-invariant sub-

Riemannian structure on the Lie group SE(2) takes this alignment into account. The

connecting curves in the left image are spatial projections of sub-Riemannian geodesics

in SE(2), which are shown in the right figure.

Figure 2.6: In the perception of contours the human mind couples positions and ori-

entations, and groups line segments in accordance with the Gestalt law of good contin-

uation Koffka (1935). The left image shows a collection of line segments in which one

can imagine a continuous curve from one red point to the other. In the right figure this

curve is shown in green in a rendering of the orientation score of the left image, and

superimposed in the 2D image (top right). The shown curve is in fact the data-adaptive

sub-Riemannian geodesic in SE(2) that connects the two red dots, and is computed

using our tracking method presented in Ch. 8.
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2.1 Invertible Orientation Scores

Figure 2.7: A roto-translation of the image corresponds to a shift-twist of the orien-

tation score, both defined via a group representations of SE(2) on the image and the

orientation score. Shift-twist of images and orientation scores are denoted respectively

by the left-regular representations Ug and Lg, cf. Eq. (2.38) and Eq. (2.37). In this

illustration of crucial Eq. (2.41) we have set g = (0, θ), with θ increasing θ from left to

right.

1. Positions and Orientations are Coupled There is a coupling between

positions and orientations as alignment of local orientations is done via translations

and orientations. This coupling of positions and orientations is reflected by the group

product g · g′ of elements of g, g′ ∈ SE(2), which is given by

g · g′ = (x, θ) · (x′, θ′) = (Rθx
′ + x, θ + θ′), (2.14)

with g = (x, θ) and g′ = (x′, θ′), in which we see θ showing up in the spatial part. In

fact, in our perception of contours and lines in images we also seem to (unconsciously)

couple positions and orientations when determining alignment of local orientations via

Gestalt principles Koffka (1935);Kanizsa (1955);Petitot (1999). Consider for example

Fig. 2.5 and Fig. 2.6.

2. Roto-translations of Images Correspond to Shift-Twists of Orienta-

tion Scores A rotation and translation of the image corresponds to a shift-twist of

the orientation score. Both roto-translations and the shift-twist operator are defined

by a group representation of SE(2) on respectively the image and the orientation score.

Consider for example Fig. 2.7.

3. One Should Work with a Rotating Derivative Frame In order to

define operators that commute with rotations and translations of the image we need to

work with rotating derivative frames in orientation scores. Such a derivative frame is
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Figure 2.8: In orientation scores a left-invariant derivative frame {A1,A2,A3} should

be used instead of the axes-aligned frame {∂x, ∂y, ∂θ} (illustrated in the top figure). The

bottom three rows of figures compare different orientation layers of the orientation score

with the Cartesian derivative ∂y and left-invariant derivative A2. Here we see that A2

is invariant under the orientation, i.e., its interpretation does not change.
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2.1 Invertible Orientation Scores

invariant under shift-twists of the orientation scores, and in a group theoretical setting

such derivative frame is called left-invariant and is obtained via push-forward of the

left-multiplication from the axis aligned derivative frame {∂x, ∂y, ∂θ}|e at the origin

e = {0, 0, 0}. Consider for example Fig. 2.8. As we can see it is instead better to work

with the moving frame of derivatives {A1,A2,A3}|g at each g given by

A1|g := cos θ ∂x + sin θ ∂y

A2|g := − sin θ ∂x + sin θ ∂y

A3|g := ∂θ ,

(2.15)

rather than the fixed frame of derivatives {∂x, ∂y, ∂θ}|g.

4. We Recognize a Curved Geometry on the Domain We recognize a

curved geometry in which curves with constant tangent vector components expressed

in the rotating derivative frame (Eq. (2.15)) become circular spirals. Consider for

example Fig. 2.8 and Fig. 2.9(a). Such curves are called exponential curves on the

group SE(2), and are in fact the “straight” lines with respect to the curved geometry.

Moreover, that we deal with a curved geometry becomes clear when we see that we

have non-zero commutators of the Lie algebra of SE(2).

The fact that the Lie algebra is not commutative is due to the fact that the group

is not commutative. I.e., rotations and translations often do not commute. For a first

intuition of how this non-commutative structure imposes a curved geometry on the

domain of orientation scores, consider for example Fig. 2.11. Here we see that first

moving along a preferred spatial direction (i.e. along A1), followed by a rotation, yields

a different result than first rotating and then translating: rotations and translations

generally do not commute.

5. Analysis of Lines in Orientation Scores Requires a Sub-Riemannian

Geometry We observe that the data in orientation scores concentrates around natu-

rally lifted curves γ(t), so-called horizontal curves with the property γ(t) = (x(t), y(t), θ(t))

for which

θ(t) = arg{ẋ(t) + iẏ(t)}. (2.16)

Such naturally lifted curves (see Fig. 2.9(a)) have their tangent vectors γ̇(t) at each

location γ(t) restricted to a sub-space ∆|γ(t) of the full tangent space Tγ(t)(SE(2)),

and live therefore in a sub-Riemannian geometry. Consider for example Fig. 2.9(a), in

which a lifted curve and its tangent vector at a certain location g is depicted. A parallel

can be drawn between these curves and the paths of moving cars: a car can only move
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Figure 2.9: (a) A lifted curve γ(t) of a planar curve γ2D(t) = (x(t), y(t)) is called

horizontal if it is defined as γ(t) = (x(t), y(t), θ(t)), with θ(t) = arg{ẋ(t) + ẏ(t)}. A

consequence is that horizontal curves always have their tangent vectors γ̇(t) contained

in a sub-space ∆|γ(t) = span{A1|γ(t),A3|γ(t)} of the full tangent space Tγ(t)(SE(2)) =

span{A1|γ(t),A2|γ(t),A3|γ(t)}. In this figure we have illustrated a special case: an expo-

nential curve. Exponential curves have constant tangent vector components expressed in

the rotating frame {A1|γ(t),A2|γ(t),A3|γ(t)}. Such curves are circular spirals in SE(2)

and are regarded as the “straight” lines in the curved geometry of SE(2). (b) An illus-

tration of the distribution ∆, i.e., the sub-bundle of the full tangent bundle T (SE(2).
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Figure 2.10: (a) A natural way of lifting a smooth planar curve (x(t), y(t)) ∈ R2, e.g.

the path of a moving car, to the space SE(2) is by considering θ(t) = arg{ẋ(t) + i ẏ(t)}
as a third coordinate in γ(t) = (x(t), y(t), θ(t)) ∈ SE(2). Curves lifted in this manner

are horizontal curves and they always have their tangent vector components restricted

to a sub-space ∆|γ(t) of the full tangent space Tγ(t)(SE(2)), see also Fig. 2.9. In our

analogy of driving a car, this restricted tangent space essentially means that a car

is not able to move sideways. (b) The mass of data in orientation scores seems to

concentrate around horizontal curves. As such, we only consider horizontal curves

when analyzing and extracting curves in orientation scores. The vessel paths shown

in (b) are the spatial projections of data-adaptive sub-Riemannian geodesics computed

using the tracking method presented in Ch. 8. I.e., these curves are shortest paths that

are computed under the restriction that they are also horizontal.
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forward and change direction, but is not able to move sideways, see Fig. 2.10. We then

include a metric tensor Gξ on the sub-bundle (called “distribution”) ∆ = {∆|g}g∈SE(2)

of the tangent bundle T (SE(2)) = {Tg(SE(2))}g∈SE(2), where we include a balancing

parameter ξ for spatial forward motion (‘hitting the gas’) and angular motion (‘turning

the wheel’). Fig. 2.9(b) illustrates the sub bundle ∆, i.e., the collection of horizontal

tangent spaces at all locations g in SE(2).

From the Frobenius theorem it follows that the distribution ∆ is non-integrable,

meaning that there does not exist a submanifold of SE(2) whose tangent space is

given by ∆. This does not even hold locally! In fact we are in the special case of a

contact manifold, and we have (complete) non-integrability of ∆ around every point g

in the sub-Riemannian manifold. The only integrable submanifolds are 1D and they

coincide with (the lifted) horizontal curves. All of this can be seen in Fig. 2.9 and

Fig.2.11. The violation of the Frobenius theorem1 Boothby (2003) is visible in Fig. 2.11,

where the order of integrations along horizontal vector fields A1 = cos θ∂x + sin θ∂y

and A3 = ∂θ matters, and moreover, the infinitesimal displacement between the blue

and red corkscrew is not within the distribution. The non-integrability is visible in

Fig. 2.9(b), where clearly there exists no submanifold of SE(2) that is tangent to the

depicted family of sub-tangent planes.

2.2 Group Theoretical Prerequisites

2.2.1 Groups, Lie Groups, and Representations

A group (G, ·) is a set of elements G equipped with a group product2 ·, a binary

operator, that satisfies the following four axioms:

• Closure: Given two elements g and h of G, the product (g · h) is also in G.

• Associativity : For g, h, i ∈ G the product · is associative, i.e., g · (h · i) = (g ·h) · i.

• Identity element : There exists an identity element e ∈ G such that e ·g = g ·e = g

for any g ∈ G.

• Inverse element : For each g ∈ G there exists an inverse element g−1 ∈ G such

that g−1 · g = g · g−1 = e.

1In words the Frobenius theorem states that a system of vector fields is integrable if it is

involutive (i.e., closed under the Lie-brackets)
2We will often omit the group product symbol “·” and simply write gh instead of g · h, it

should then be clear from context that the group product is used.
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Figure 2.11: The left sub-columns show a concatenation of motions (obtained via

group products) in SE(2), the moving object is illustrated as a corkscrew. The right

sub-columns illustrate uncoupled motions in the flat Euclidean space R3, the moving

object is illustrated as square box. In this illustration two motions are considered:

translation along a “forward” direction (the A1-direction (cf. Fig. 2.8) in the SE(2)

case, the ∂x-direction in the R3 case), and movement in the vertical direction (which

corresponds to rotation in the SE(2) case). Note that at the first frame A1 and ∂x

coincide at the origin. The left column (red) shows the concatenation of first translating

and then rotating, and the right column (blue) shows the concatenation of first rotating

and then translating of the corkscrew and square box. In the flat Euclidean geometry

of R3 the end configuration is the same for blue and red box. In the curved geometry

of SE(2) the location of the red and blue corkscrew is however not the same. The

figure is based on an animation by Erik Franken Franken (2008), which is available at

http: // erikbekkers. bitbucket. io/ data/ thesis/ commutationSE2. gif

.
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A basic example of a discrete infinite group is the group (Z,+) of integers quipped

with the addition operator +. An example of a continuous infinite group is the the

translation group (R2,+), with group product and inverse given by

g h = (x) (y) = x + y

g−1 = (−x),
(2.17)

with g = (x), h = (y) ∈ R2.

In fact, the group (R2,+) is a Lie group. A Lie group is a continuous group whose

group elements are parameterized by a finite dimensional differentiable manifold. In

essence, this means that a Lie group is a group to which we can apply differential ge-

ometry. While such differential geometry is not per se necessary for the group (R2,+),

it does allow us to introduce (classical) differential geometrical tools in the general set-

ting of a Lie group, in particular for our main group of interest: the roto-translation

group SE(2).

In order to map the structure of the group to some mathematical object, one re-

quires a representation. If we generally say that H is the vector space to which our

mathematical object belongs (e.g. H = L2(R2) in case of 2D images) and B is the

space of bounded linear invertible operators H → H (e.g. translation of an image),

then a representation is defined as follows. A representation is a mapping of the form

V : G → B(H) that maps a group element to an operator, i.e., V = (g 7→ Vg), such

that:

• the identity element maps to the identity operator: e 7→ I,

• the group product is preserved: g · h 7→ Vgh = Vg ◦ Vh,

• and consequently the inverse is preserved: g−1 7→ (Vg)−1.

Here “◦” denotes operator concatenation, so we have Vgh(f) = Vg(Vh(f). An example

of a representation for the group G = (R2,+) is given by

(Tg ◦ f)(h) = f(g−1h) = f(y − x),

with g = x, h = y ∈ R2, i.e., a translation of an image f . In fact, the translation

operator Tg is the left-regular representation of the Lie group (R2,+). It is called

left-regular, as the (group) multiplication takes place on the left side. Generally we

denote left-regular representations by Lg, and left-multiplication of group elements

by Lg, e.g.,

(Lg ◦ f)(h) = (f ◦ L−1
g )(h) = f(g−1h),
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where Lg(h) = g h.

An operator Φ : L2(G) → L2(G), i.e., an operator acting on L2 functions on G, is

called left-invariant if it commutes with the left-regular representation:

∀g ∈ G : Φ ◦ Lg = Lg ◦ Φ. (2.18)

In our 2D example an operator is thus called left-invariant if it does not matter if we

apply the operator first and then translate the image, or if we translate the image first

and then apply the operator.

2.2.2 Tangent Spaces and Left-Invariant Vector Fields

Associated with each group element g ∈ G is a tangent space Tg(G). The tangent

space at g is defined as

Tg(G) = {γ̇(0) | γ : R→ G differentiable, with γ(0) = g}, (2.19)

i.e., the union of all possible tangent vectors γ̇(0) of differentiable curves γ(t) for which

γ(0) = g. The union of all tangent spaces Tg(G) (at each g ∈ G) is called the tangent

bundle T (G), i.e.,

T (g) = {Tg(G)}g∈G.

Each tangent space can be spanned by a basis. In this work we will work with a

left-invariant frame of basis vectors {Ai|g}Ni=1 for which we have the property that if we

express any tangent vector γ̇(t) in this basis, i.e. γ̇(t) =
∑N

i=1 c
i(t)Ai|γ(t), the tangent

vector components ci(t) remain unchanged if the curve γ(t) is moved around via left

multiplication by an arbitrary group element g ∈ G. This is illustrated in Fig. 2.12 for

both (R2,+) and SE(2) where in the (R2,+) case the left multiplication g γ(t) with

g = (x) ∈ R2 corresponds to a translation of the curve γ(t), and in the SE(2) case this

corresponds to a translation by x and rotation by θ with group elements g = (x, θ).

The operation of transporting tangent vectors from γ̇(0) ∈ Te(G) to g γ̇(0) ∈ Tg(G) is

called the push-forward of left-multiplication Lg and is denoted by (Lg)∗. We thus

associate to each basis vector Ai a left-invariant vector field given by

Ai|g = (Lg)∗Ai, for all g ∈ G. (2.20)

Such vector fields can be considered as differential operators acting on functions on the

group G. This viewpoint will be applied extensively in this thesis, and therefore the

reader must keep in mind the following remark:
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Figure 2.12: The tangent space Te(G) of the group at the identity e is the union

of all possible tangent vectors γ̇(0) of curves γ(t) with γ(0) = e. The full tangent

space is spanned by some basis defined at e; in the (R2,+) case we define Te(R2) =

span{∂x|e, ∂y|e}, in the SE(2) case we define Te(SE(2)) = span{A1|e,A2|e,A3|e}. In

the left-figure of the SE(2) case we only show the spatial projections of curves γ and

group elements g, these are however actually three dimensional objects as shown in the

right figure. The tangent spaces at arbitrary points on a curve γ(t) can be defined in

such a way that the components of tangent vectors γ̇(t) (indicated in red) expressed

in the basis vectors that span Tγ(t)(G) are invariant to left-multiplication by arbitrary

g ∈ G. Such a set of basis vectors forms a left-invariant vector field.
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Remark 5. In differential geometry there exist two equivalent viewpoints on tangent

vectors Ag ∈ Tg(G): either one considers them as tangents to locally defined curves; or

one considers them as differential operators on locally defined functions. The connection

between these viewpoints is as follows. We identify a tangent vector γ̇(t) ∈ Tγ(t)(G) with

the differential operator

γ̇(t)f :=
d

dt
f(γ(t)) (2.21)

for all locally defined, differentiable, real-valued functions f ∈ L2(G).

When considering each Ai|g as a differential operator acting on smooth locally

defined functions f we can define the push forward as follows

Ai|gf = (Lg)∗Ai|ef := Ai|e(f ◦ Lg−1). (2.22)

For the SE(2) case we arrive at the left-invariant derivative frame {A1|g,A2|g,A3|g}
given in Eq. (2.15) by letting the push-forward of the left-multiplication act on the axis

aligned derivative frame {∂x|e, ∂y|e, ∂θ|e}. In the (R2,+) case the generated vector field

{∂x|g, ∂y|g} is parallel (w.r.t. a flat connection) for all g ∈ (R2,+).

With respect to the notation of vectors and vector fields we remark the following:

The basis vectors at the origin are denoted with Ai := Ai|e, these are used to construct

left-invariant vector fields which we denote with Ai, and the tangent vector that arises

by restricting the vector field to group element g is denoted with Ai|g.

2.2.3 Matrix Groups and the Exponential Map

Many Lie groups can be expressed as matrix groups. For such a matrix Lie group, both

group elements g ∈ G and tangent vectors A|g ∈ Tg(G) can be expressed as N × N
matrices, denoted by Gg ∈ CN×N and A|g ∈ CN×N respectively. Such matrix repre-

sentations are convenient as in many cases they will simplify equations and definitions.

For example, a group product g g′ can be written as the matrix product GgGg′ , and

group inverse g−1 as the matrix inverse G−1
g .

Example 1. In the (R2,+) case the group elements can be represented as

g = (x, y)↔ Gg =

 1 0 x

0 1 y

0 0 1

 , (2.23)
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and the basis vectors ∂x and ∂y

∂x ↔ Ax =

 0 0 1

0 0 0

0 0 0

 , and ∂y ↔ Ay =

 0 0 0

0 0 1

0 0 0

 . (2.24)

Indeed we see that the matrices Gg again form a group, and that GgGh = Ggh, and

G−1
g Gg = Gg−1Gg = Gg−1g = Ge = I, with I the identity matrix (the matrix repre-

sentation of the identity element e).

In matrix form the push-forward is simply obtained by matrix multiplication of

group elements with tangent vectors:

Ai|g = (Lg)∗Ai ↔ Ai|g = GgAi. (2.25)

The group elements and tangent vectors relate to each other via the exponential

mapping exp : Te(G)→ G, which in matrix form is obtained as the matrix exponent

of tangent vectors A:

G = exp(A) = I +

∞∑
n=1

An

n!
=

∞∑
n=0

An

n!
. (2.26)

The exponential map defines the logarithmic mapping log : G → Te(G) which is

computed by

A = log(G) =
∞∑
n=1

(−1)n−1

n
(G− I)n. (2.27)

The exponential map also defines exponential curves. These are curves of the form

γcg (t) := g exp(tAc), (2.28)

with Ac =
∑N

i=1 c
iAi a tangent vector defined by the tangent vector components c =

(c1, c2, ..., cN ) ∈ RN . Such curves are completely defined by Ac and have constant

tangent vector components expressed in the left-invariant basis vectors Ai. Exponential

curves are given as solutions of the following ordinary differential equation

{
d
dtGγ(t) = Gγ(t)Ac

γ(0) = g
↔

{
γ̇(t) = (Lγ(t))∗Ac

γ(0) = g
↔

 γ̇(t) =
N∑
i=1

ciAi|γ(t)

γ(0) = g

(2.29)

with γ(t) = γcg (t) given by (2.28).
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Example 2. In the (R2,+) case exponential curves are straight lines as they are the

solutions of  0 0 ẋ

0 0 ẏ

0 0 0

 =

 0 0 c1

0 0 c2

0 0 0

 . (2.30)

2.2.4 The Lie Algebra

The last group theoretical notion that we discuss in this section is that of a Lie algebra.

A Lie algebra is a vector space (e.g. the tangent space at the identity element Te(G))

that is endowed with a binary operator called the Lie bracket or commutator [·, ·] :

Te(G)× Te(G)→ Te(G) with the following properties

• bilinearity : [a A+b B,C] = a[A,C]+b[B,C] and [C, a A+b B] = a[C,A]+b[C,B]

for all A,B,C ∈ Te(G) and all a, b, c ∈ R.

• anticommutatitivity : [A,B] = −[B,A] for all A,B ∈ Te(G).

• Jacobi identity : [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0 for all A,B,C ∈ Te(G).

In general, for matrix groups the commutator [A,B] of two vector fields A,B is defined

as

[A,B] = lim
t→0

γ(t)− e
t2

, (2.31)

where the curve γ is defined as

γ(t) = exp(−tB) exp(−tA) exp(tB) exp(tA). (2.32)

Intuitively seen, this operator describes the infinitesimal displacement obtained by fol-

lowing the path of γ(t) as defined in (2.32), which is illustrated in Fig. 2.13. Using the

matrix representation of tangent vectors, the commutator is defined as

[A,B] = AB−BA. (2.33)

It is readily verified that all the commutators of the basis vectors Ax and Ay (cf.

Eq. (2.24)) of the tangent space Te(R2) are zero. For the left-invariant vector fields on

SE(2) this is not the case, see Fig. 2.11 and Fig. 2.13(b).
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Figure 2.13: The commutator is defined by Eq. (2.31) and describes the direction

obtained by infinitesimal displacement along curve γ(t) defined in (2.32). Panel (a)

illustrates the commutator and the path γ(t) for vectors A and B in an arbitrary man-

ifold. Panel (b) illustrates the commutator for the SE(2) group for tangent vectors

A1, A3 ∈ Te(SE(2)). Here only the spatial part of the trajectory of γ(t) is illustrated,

and the same directions of movement A1 and A3 (cf. 2.15) of the corkscrew as in

Fig. 2.11 are considered.

2.3 The Roto-Translation Group and Left-Invariant

Processing via Invertible Orientations Scores

2.3.1 The Lie group SE(2)

The Lie group SE(2) is of special interest in this thesis as we identify it as the domain

of orientation scores. In this section the previously described group theoretical notions

will be repeated here for the group SE(2) specifically.

The group SE(2) is the group of rigid body motions g = (x,Rθ) ∈ SE(2) which

acts on the space of positions and orientations R2 × S1 via

g · (x′, θ′) = (Rθx
′ + x, θ + θ′). (2.34)

Note here that (x, θ) = (x,Rθ) · (0, 0), which allows us to uniquely identify the space

of positions and orientations with the rigid body motion group SE(2) = R2 × SO(2),

i.e., we identify

R2 × S1 3 (x, θ)↔ (x,Rθ) = g ∈ R2 o SO(2),

with SO(2) denoting the group of planer rotations. As the combination of two rigid
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body motions is again a rigid body motion, SE(2) is equipped with the group product

and group inverse:

g · g′ = (x,Rθ) · (x′,Rθ′) = (Rθx
′ + x,Rθ+θ′)

g−1 = (−R−1
θ x,−θ).

(2.35)

Note that because the rotation shows up in the translation part of the group product

(also recall our intuition on coupling of positions and orientations from Subsec. 2.1.6

and Fig. 2.5), we cannot just write the Cartesian product × to denote the group

SE(2) as the (uncoupled) combination of translations R2 and rotations SO(2). Instead,

because we have this coupling, we have to use the semi-direct product o and write

SE(2) = R2 oSO(2), or equivalently SE(2) = R2 oS1. The matrix representation Gg

of group elements g = (x, θ) = (x, y, θ) ∈ SE(2) is given by

Gg =

(
Rθ x

0 1

)
=

 cos θ − sin θ x

sin θ cos θ y

0 0 1

 . (2.36)

It is readily verified that Ggg′ = GgGg′ for all g, g′ ∈ SE(2).

2.3.2 Left-Invariance

The left-regular representation of the SE(2) group on orientation scores U ∈ L2(SE(2))

is given by

(Lg ◦ U)(h) = (U ◦ L−1
g )(h) = U(g−1 · h), (2.37)

with left-multiplication Lg(h) = g · h. The left-regular representation on images f ∈
L2(R2) is given by

(Ug ◦ f)(y) = f(R−1
θ (y − x)), g = (x, θ) ∈ SE(2), x ∈ R2. (2.38)

Alternatively, the right-regular representation is given by

(Rg ◦ U)(h) = (U ◦Rg)(h) = U(h · g). (2.39)

Recall Subsec. 2.1.1, where we remarked that in general different kind of scores can

by obtained via different kind of group representations. Indeed, an orientation score

Uf (Eq. 2.1) is constructed from an image f ∈ L2(R2) by means of the left-regular

representation of SE(2) on wavelets ψ ∈ L2(R2) via

Uf (x, θ) = (U(x,θ)ψ, f)L2(R2). (2.40)
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Let Φ : L2(SE(2))→ L2(SE(2)) be an operator acting on orientation scores, then it

is said to be left-invariant if it commutes with the left-representation Lg, recall Eq. 2.18.

Let Υ =W∗ψ ◦Φ ◦Wψ be the net effect of processing images via orientation scores, i.e.,

the effect of reconstructing (via W∗ψ) an orientation score (obtained via Wψ) that is

processed via Φ. The net operator Υ on the image f is Euclidean invariant (invariant

to roto-translations of the image) if Υ ◦ Ug = Ug ◦ Υ for any g ∈ SE(2). Generally

this is a property that one aims for in the development of operators Φ, and it has the

consequence that the operators Φ should be left-invariant Duits (2005). In fact, under

the assumption that Φ maps the space of orientation scores onto itself we have

∀g∈SE(2) Φ ◦ Lg = Lg ◦ Φ ⇔ ∀g∈SE(2) Υ ◦ Ug = Ug ◦Υ.

The key idea behind this relation is

WψUg = LgWψ. (2.41)

2.3.3 Left-Invariant Vector Fields

The left-invariant vector fields on SE(2) are obtained via push-forward of the left-

multiplication acting on the axis aligned derivative frame {∂x|e, ∂y|e, ∂θ|e} at the origin.

As such we take A1 = ∂x|e, A2 = ∂y|e and A3 = ∂θ|e as the Lie algebra, and obtain the

left-invariant vector fields

A1|(x,y,θ) := (L(x,y,θ))∗A1 = cos θ ∂x|(x,y,θ) + sin θ ∂y|(x,y,θ)
A2|(x,y,θ) := (L(x,y,θ))∗A2 = − sin θ ∂x|(x,y,θ) + cos θ ∂y|(x,y,θ)
A3|(x,y,θ) := (L(x,y,θ))∗A3 = ∂θ|(x,y,θ) .

(2.42)

The corresponding commutators (recall (2.33)) are given by

[A1, A3] = −A2, [A2, A3] = A1, [A1, A2] = 0, and

[A1,A3] = −A2, [A2,A3] = A1, [A1,A2] = 0,
(2.43)

In general we have Lie algebra constants

[Ai,Aj ] =

3∑
k=1

ckijAk, (2.44)

with nonzero structure constants

c2
13 = −1, c1

23 = 1, c2
31 = 1, c1

32 = −1. (2.45)
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The matrix representation of the Lie algebra is given by

A1 =

 0 0 1

0 0 0

0 0 0

 , A2 =

 0 0 0

0 0 1

0 0 0

 , A3 =

 0 −1 0

1 0 0

0 0 0

 . (2.46)

Now that the basis vectors Ai for the Lie algebra are explicitly defined we can also

compute the group elements via the exponential mapping defined in Eq. (2.26):

G(x,y,θ) = exp(xA1) exp(yA2) exp(θA3)

=

 1 0 x

0 1 0

0 0 1


 1 0 0

0 1 y

0 0 1


 cos θ − sin θ 0

sin θ cos θ 0

0 0 1



=

 cos θ − sin θ x

sin θ cos θ y

0 0 1

 ,

(2.47)

and see that this indeed corresponds to the matrix representation of the group elements

defined in Eq. (2.36). In fact (2.47) shows that (x, y, θ) are exponential coordinates of

the second kind (i.e. a product of matrix exponentials). It is also possible to use

exponential coordinates (c1, c2, c3) of the first kind:

Gg = exp(Ac) = exp(c1A1 + c2A2 + c3A3)

=


cos c3 − sin c3 c1 sin c3−c2(1−cos c3)

c3|

sin c3 cos c3 c1(1−cos c3)+c2 sin c3

c3

0 0 1

 ,

(2.48)

from which we directly obtain the expression in our regular group notation

g = (x, y, θ) = exp(Ac) = exp(c1A1 + c2A2 + c3A3) (2.49)

with

x =
c1 sin c3 − c2(1− cos c3)

c3
, y =

c1(1− cos c3) + c2 sin c3

c3
, θ = c3, if c3 6= 0,

x = c1, y = c2, θ = 0, if c3 = 0.

(2.50)
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The logarithmic mapping log : SE(2)→ Te(SE(2) is in matrix notation given by

Ac = log(Gg)) =

 0 −θ 1
2θ(y + x cot θ2)

θ 0 1
2θ(−x+ y cot θ2)

0 0 0

 (2.51)

Using the regular group notations we write

Ac = log(g), (2.52)

with

c1 = 1
2θ(y + x cot θ2), c2 = 1

2θ(−x+ y cot θ2), c3 = θ, if θ 6= 0,

c1 = x, c2 = y, c3 = 0, if θ = 0.
(2.53)
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Chapter 3

The Developed Retinal Image

Processing Applications
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In Chapter 1 we introduced retinal imaging as a versatile medium for studying

various health parameters. A large amount of research in this field is done on the

study of retinal microvasculature and its relation to systemic diseases such as diabetes

melitus, or more generally, any other health status (such as blood pressure and body

mass index). In order to facilitate this kind of research as to allow for large scale

clinical studies, and in order to support large scale screening programs that rely on

retinal images, the following applications have been developed in this thesis:

• Anatomical landmark detection (Ch. 5): Automatic detection of the key anatom-

ical landmarks (the fovea and the optic nerve head) in retinal images.

• Vessel enhancement (Ch. 6): Robust crossing preserving vessel enhancement of

blood vessels.

• Vessel tracking and segmentation: Construction of models (parameterizations)

of the retinal blood vessels. Here we developed three of such techniques:

– Part I: Vessel segmentation via locally optimal tracking (Ch. 7): Fully au-

tomated tracking of the vessel edges, and tracking of the complete retinal

vasculature.

– Part II: Vessel centerline extraction via globally optimal tracking in SE(2)

(Ch. 8): Semi-automatic tracking of vessel centerlines using Sub-Riemannian

geodesics in SE(2).

– Part III: Vessel centerline extraction via globally optimal tracking in SO(3)

(Ch. 9): An extension of the tracking method to the tracking in spherical

images.

• Vessel Analysis (Ch. 10, Ch. 11, Ch. 12): Extraction of clinically relevant (geo-

metrical) vessel features such as artery/vein classification, vessel curvature and

vessel caliber.

In each of these applications new algorithms are developed in the framework of left-

invariant processing of orientation scores. In the following subsections we go through

these applications one by one, and discuss briefly 1) the motivation of the problem, 2)

how we solve the problem, and 3) how the developed method compares to the state

of the art. In all of these applications we will see that it has indeed been favorable to

resort to left-invariant processing of orientation scores, rather than to use conventional

2D image processing techniques. In the Chapters 5 to 12 each of the applications will

then be discussed in full detail.
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3.1 Anatomical Landmark Detection (Ch. 5)

Motivation In this application we detect the location of the fovea and the optic

nerve head (ONH) (cf. Subsec. 1.1 and Fig. 3.1). Both the fovea and the ONH are key

anatomical landmarks in the retina as they play an important role in the following:

1. They both are used as reference locations in standardized measurement protocols

Group et al. (1991); Klein et al. (1991); Wilkinson et al. (2003). E.g., vessel

features are typically analyzed in a region between one optic disk diameter to

two diameters away from the ONH center, and the presence of lesions around the

fovea heavily determines the severity of pathologies such as diabetic retinopathy

and age related macular degeneration. Lesions that are closer to the fovea affect

vision more severely, and are an indicator of faster disease progression Wilkinson

et al. (2003).

2. The optic nerve head is the place from which the vascular tree departs. As such

it is a preferred location for the initialization of tracking methods that iteratively

grow models of the retinal vasculature Bekkers et al. (2014a); Jiang et al. (2007);

Zhang et al. (2014).

3. In other automated retinal image analysis algorithms the (distance to the) fovea

and/or the ONH location are used as features in supervised methods for auto-

matic pathology grading Quellec et al. (2016), image quality assessment Fleming

et al. (2006), and artery/vein classification Zamperini et al. (2012).

Robust localization of the fovea and ONH is thus essential as many retinal image

analysis pipelines rely on the correct localization of these structures.

Method The developed method for the detection of the key anatomical landmarks

focuses on two aspects: speed and robustness. Speed is achieved by using a simple

and short processing pipeline that relies on template matching via cross-correlation.

Robustness is achieved by performing template matching with templates learned from

training samples and do the matching in both the image and orientation score domain.

Both the fovea and landmarks are characterized by blob-like intensity patterns and

vessel patterns, and are addressed by respectively template matching in images and

orientation scores. The fovea is recognized as a dark blob lying in an avascular region

of the retina. It is surrounded by the main vessel arcades and a pattern of small blood

vessels oriented towards the dark blob. The ONH is usually recognized as a bright disk-
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3. THE DEVELOPED APPLICATIONS

Figure 3.1: Left: the appearance of the fovea is characterized by a dark blob structure,

a pattern of bigger blood vessels that arc around it, and a pattern of smaller blood

vessels that are oriented towards the center. Right: the optic nerve head (ONH) is

characterized by a disk-like shape (better visible on the left image), and a pattern of

blood vessels that radiate outwards from the center of the ONH.

Figure 3.2: An image patch fi centered around the optic nerve head and a volume

rendering of the corresponding orientation score Ufi.
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3.1 Anatomical Landmark Detection (Ch. 5)

like structure (or dark/gray on SLO images), with a pattern of blood vessels radiating

outwards. See for example Fig. 3.1 in which these patterns are illustrated.

In 2D, template matching via cross-correlation is based on taking inner products

of a roto-translated template t ∈ L2(R2) with the image f ∈ L2(R2), and optimize

objective functionals

P (x, θ) = (U(x,θ)t, f)L2(R2), (3.1)

with (·, ·)L2(R2) the standard inner product between 2D images, and with Ug the left-

regular representation of SE(2) on images, recall Eq. (2.38). I.e., the most likely object

location and orientation is given by

(x∗, θ∗) = argmax
x∈R2,θ∈S1

P (x, θ).

To get the best out of this approach, we learn templates t in a linear regression based

frame work, where we minimize energy functionals of the form

Elin(t) =
1

N

N∑
i=1

(
(t, fi)L2(R2) − yi

)2
︸ ︷︷ ︸

data-term

+ R(t)︸︷︷︸
regularization−term

, (3.2)

with fi one of N image patches that either contains the object of interest, in which

case desired response is yi = 1, or when it does not, in which case the desired response

is yi = 0. The term R(t) is an additional penalty functional (prior) that imposes

additional constraints on the template such as smoothness. An example of an image

patch fi that contains the ONH and the corresponding orientation score Ufi (used in

the extension to SE(2)) is given in Fig. 3.2.

In Ch. 5 we describe our approach in full detail and propose extensions for template

matching and training of templates using orientation scores. There we also propose an

adaptation to learning templates via logistic regression instead of linear regression. In

our extension of template matching and linear/logistic regression on SE(2) we include a

regularization term that imposes an anisotropic smoothness of the templates along line

structures. This regularization term is defined via the left-invariant derivative frame

{A1,A2,A3}, and thereby takes into account the curved geometry of the domain SE(2)

(cf. Subsec. 2.1.6).

We will also establish a theoretical connection between our left-invariant smoothing

prior and time integrated (with a negatively exponentially distributed traveling time)

hypo-elliptic Brownian motions on SE(2). This gives us a stochastic interpretation of

the regularization induced by the prior. Furthermore, we show that our linear regression

approach can also be used for smoothing of images and orientation scores.
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Table 3.1: Comparison to state of the art: Optic nerve head detection success rates,

the number of fails (in parentheses), and computation times. The MESSIDOR, DRIVE

and STARE databases contain respectively 1200, 40 and 81 images.

Method MESSIDOR DRIVE STARE Time (s)

Lu (2011) 99.8% (3) 98.8% (1) 5.0

Lu & Lim (2011) 97.5% (1) 96.3% (3) 40.0

Yu et al. (2012) 99.1% (11) 4.7

Aquino et al. (2012) 99.8% (14) 1.7

Giachetti et al. (2013) 99.7% (4) 5.0

Ramakanth & Babu (2014) 99.4% (7) 100% (0) 93.83% (5) 0.2

Marin et al. (2015) 99.8% (3) 5.4†

Dashtbozorg et al. (2015) 99.8% (3) 10.6†

Proposed 99.8% (2) 97.8% (1) 98.8% (1) 0.5

†Timings include simultaneous disk segmentation.

Results In Ch. 5 we extensively validate the method on five different databases,

three of which are publicly available benchmark datasets, and two of which are private

databases that contain images from both a traditional fundus camera and an SLO

camera. For optic nerve head detection a success rate of 99.83% was achieved on a

test set of 1737 images (only 4 failed detections), with the detection taking on average

0.5 seconds per image. In comparison to the state of the art on ONH detection, our

method improves both on speed and detection performance, see Table. 3.1. For fovea

detection a success rate of 99.32% was achieved on a set of 1616 images. As our fovea

detection algorithm is based on the same method as ONH detection, also here the

processing times is on average 0.5 seconds per image. With only 3 failed detections

and a processing time of 0.5 seconds, compared to 11 fails and a processing time of 5

seconds by the best performing method on a public benchmark set of 1200 images, our

method again improves both on speed and detection performance, see Table. 3.2.

3.2 Vessel Enhancement (Ch. 6)

Motivation Proper enhancement of blood vessels is a core ingredient in many retinal

image analysis pipelines. Here we use the term vessel enhancement for the construction
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Table 3.2: Comparison to state of the art: Fovea detection success rates, the number

of fails (in parentheses), and computation times. The MESSIDOR database contains

1200 images.

Method MESSIDOR Time (s)

Niemeijer et al. (2009) 97.9% (25) 7.6†

Yu et al. (2011) 95.0%∗ (60) 3.9†

Gegundez-Arias et al. (2013) 96.9% (37) 0.9

Giachetti et al. (2013) 99.1% (11) 5.0†

Aquino (2014) 98.2% (21) 10.9†

Proposed 99.7% (3) 0.5

∗Success-criterion based on half optic radius.
†Timing includes ONH detection.

of a function that has high value at vessel locations and low values otherwise. Such

functions are also referred to as “soft vessel segmentations” or “vesselness functions”. In

particular the performance of vessel segmentation and tracking methods heavily relies

on the construction of a reliable vessel enhancement. For example, a typical vessel

segmentation algorithm takes a soft-segmentation as input and thresholds it to obtain

a hard segmentation. In geodesic tracking methods, such as the one presented in this

thesis in Chapter 8, vessel enhancements are necessary to construct cost functions that

give low penalty to curves that are aligned with blood vessels. In this thesis we will

also use soft-segmentations to weight pixel-wise feature values. For example, using one

of the methods described in Chapter 11 we can assign to every pixel a curvature value.

A global curvature value for the full image is then defined as the weighted average of

the curvature values, weighted by their vesselness value.

One of the most used and well established vessel enhancement methods in litera-

ture is Frangi’s vesselness filter Frangi et al. (1998). The filter enhances blood vessels

whereby it relies on an anisotropy measure derived from the eigenvalues of the Gaussian

Hessian matrix. A drawback of Frangi’s vesselness filter is that it does not work on

crossings and bifurcations as these structures are not anisotropic. In order to deal also

with these structures we derive a vesselness filter via processing of orientation scores

(recall from Subsec. 2.1.1 that there are no such things as crossings in orientation

scores). The result is a crossing-preservering vessel enhancement method.
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3. THE DEVELOPED APPLICATIONS

Figure 3.3: An image patch f and the vesselness results obtained by the classical

Frangi vesselness filter (denoted by VFr(f)), vesselness in SE(2) using the left-invariant

derivative frame {Ai}3i=1 (denoted with VAi(f)), and vesselness in SE(2) using the

gauge frame {Bi}3i=1 (denoted with VBi(f)).

Method In the 2D Frangi vesselness filter, blood vessels are enhanced on the basis of

two vesselness measures which are derived from the Hessian in the image domain. Mea-

sure one is an anisotropy measure which we denote byR, measure two is a structureness

measure which we denote by S. The classical Frangi vesselness filter VFr(f) : R2 → R+

of image f ∈ L2(R2) takes the following form:

VFr(f) =

{
0 if Q ≤ 0

exp(− R2

2σ2
1
)
[
1− exp(− S

2σ2
2
)
]

if Q > 0
(3.3)

with R = λ1
λ2

the anisotropy term, S =
√
λ2

1 + λ2
2 the structureness term, and Q a

convexity measure (in order to enhance either dark or bright line structures), and with

λ1, λ2 the eigenvalues (|λ1| ≤ |λ2|) of the Gaussian Hessian matrix

Hσs(f) =

(
∂2
x(Gσs ∗ f) ∂x∂y(Gσs ∗ f)

∂x∂y(Gσs ∗ f) ∂2
x(Gσs ∗ f)

)
(3.4)

computed in the image domain at scale s. Parameters σ1 and σ2 in Eq. (3.3) scale

respectively the anisotropy and structureness measures. In our generalization to SE(2)

the general definition stays the same, however now we define the vesselness filter

VAi : L2(SE(2))→ L2(SE(2)), and redefine measures R,S,Q in terms of second order

left-invariant derivatives of orientation scores. The vessel enhanced orientation score

(VAi(Uf ))(x, θ) can then be projected to the plane (e.g. via a maximimum intensity

projection over orientation s θ), resulting in a 2D vesselness image. As we will show in

Chapter 6 the results are very similar to those of the standard Frangi vesselness filter,

however, now with a preservation of vessel structures at crossings and bifurcations.
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3.2 Vessel Enhancement (Ch. 6)

Figure 3.4: Left: comparison of multiple-scale Frangi vesselness and vesselness via

gauge frames. Average accuracy and sensitivity on the HRF dataset Odstrcilik et al.

(2013) over threshold values h. Shaded regions correspond to ±1σ. Right: comparison

of the SE(2) vesselness filter with and without including the gauge frame Duits &

Janssen et al. (2016).

In Chapter 6 we then further extended the generalization of Frangi vesselness fil-

tering to SE(2) by replacing the left-invariant derivative frame {A1,A2,A3} in the

definition R, S, Q with a gauge frame {B1,B2,B3}. The gauge frame is obtained from

the 3D left-invariant Hessian matrix. As such, in this frame the filter is no longer

confined to the fixed discrete θ-slices, but is fully aligned with the 3D line structures

in the orientation scores. This increase in data-adaptivity gives a further improvement

on the results.

Results Computing vesselness via left-invariant processing of the orientation score

results in a crossing-preserving vessel enhancement method. Vesselness defined in a left-

invariant gauge frame results in a further improvement, mainly observed as additional

noise suppression. A preview of the results is given in Fig. 3.3. These conclusions are

supported by quantitative evaluation on public benchmark dataset, which will be fully

59



3. THE DEVELOPED APPLICATIONS

discussed in Chapter 6, and which are summarized in Fig. 3.4.

3.3 Vessel Tracking Part I (Ch. 7)

Motivation Models of the retinal vasculature form the basis for many vessel mea-

surements that are used in clinical research. In the application discussed in this section

models of the vasculature are constructed via an iterative vessel tracking method. Re-

liable vessel measurements demand high accuracy in the construction of vessel models.

This means that automated algorithms have to deal with crossings, bifurcations, and

other complex configurations that challenge vessel tracking, without compromising ves-

sel model accuracy. In this application we again deal with such challenging situations

by performing vessel tracking in the domain of orientation scores, as here such complex

vessel structures are neatly disentangled based on their difference in orientation. A

basic example is given in the top panel of Fig. 3.5.

Method The developed tracking method grows a full vasculature model starting

from an initial set of seed points which are automatically detected around the optic

nerve head. For each seed point the method iteratively expands a blood vessel model,

and detects new seed points along the way. Each vessel model consists of a sequence

of paired vessel edge points. These edge points are simultaneously traced trough an

orientation score based on the following principle. We consider a curve t 7→ γ(t) =

(x(t), θ(t)) ∈ SE(2) to be locally optimal if it optimizes an objective function in the

transversal 2D tangent plane

Vγ(t) = span{A2|γ(t),A3|γ(t)}.

Since the imaginary part of orientation scores directly encodes for edges (cf. Sub-

sec. 2.1.5), it can be directly used as objective function in our transversal optimization

scheme to find the most probable edge paths. This is the fundamental principle on

which the developed iterative vessel tracking method is based, and it is illustrated in

the bottom panel of Fig. 3.5. Also in view of extracting modes in completion fields this

approach indeed leads to globally optimal curves, cf. Chapter 7 and (Bekkers et al.,

2014a, App. A)Duits & Van Almsick (2008).

Results In Chapter. 7 we validate the reliability of the width measurements pro-

vided by the vessel models using ground truth data, and show that the iterative track-

ing method performs excellently in comparison to other state of the art algorithms.
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Figure 3.5: Illustration of the iterative vessel tracking method from Chapter 7. Top

panel: An illustration of the orientation score transform at a crossing in which the two

crossing vessels are disentangled, this allows for robust vessel tracking through crossings

(right figure). Bottom panel: (a) Graphical representation of blood vessels in the

orientation score. The real and imaginary part of the orientation score on the yellow

plane V (perpendicular to the blood vessel) are represented in (b) and (c) respectively.

In (c) the left and right edge of the blood vessel are expressed as black and white blobs

respectively. The edge and orientation detection profiles are demonstrated in (d) .
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Figure 3.6: (a) The hierarchical structure of the generated vasculature models allow

the segmentation and analysis of complete branches. (b) The automatic extraction of

branching (yellow) and crossing points (red). (c) The distance to the optic disk; a

feature that can easily be extracted because of the guaranteed connectedness of vessel

segments in the generated vasculature models.

Validation of the topology of the models showed that our method constructs clean

topological models of the vascular tree, i.e. they contain very few false positive vessels.

An exemplary result of the tracking method is given in Fig. 3.6, in which we demon-

strate some of the key features of the method: The method provides a full vascular tree

segmentation including topological information (Fig. 3.6a); bifurcations and crossings

can be readily obtained from the vascular model (Fig. 3.6b); and the method guarantees

a connectedness of the vessels and allows therefore the computation of features such as

the distance to the vessel tree source (Fig. 3.6c).

3.4 Vessel Tracking Part II & III (Ch. 8 & 9)

Motivation In the previous Subsec. 3.3 we discussed a fully automated method for

the extraction of a full model of the vascular tree, which was based on local curve

optimization. This method was based on the automatic tracking of a vessel, provided a

given seed point. In some applications however one wants not only to compute a curve

starting form a certain seed point, but also the guarantee that it ends at a certain

location. This guarantee cannot be provided by the local curve optimization method.

In this section we describe a novel method for the computation of the most optimal

curve connecting a given source- and sink-point. Initially we assume that these points

are manually provided and as such we consider the method a semi-automatic method

for globally optimal curve computation.

The method proposed in Ch. 8 solves the variational problem of finding the shortest
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horizontal curve γ(t) ∈ SE(2) connecting two given points g0 = (x0, θ0), g1 = (x1, θ1) ∈
SE(2) given a sub-Riemannian metric tensor Gξ,C0 |γ(t) that depends on a smooth exter-

nal cost function C. This problem is formulated as follows

γ∗ = argmin
γ∈S(g0,g1)

T∫
0

√
Gξ,C0 |γ(t)(γ̇(t), γ̇(t))dt, (3.5)

in which S(g0, g1) denotes the set of smooth (infinitely differentiable) horizontal curves

(c.f. Eq. (2.16)) that connect g0 = γ(0) with g1 = γ(T ), and which have their tangent

vectors contained in distribution ∆ (c.f. Figs. 2.9 and 2.10). Here the metric Gξ,C0 :

SE(2) × ∆ × ∆ → R+ measures the length of tangent vector γ̇(t), and the cost C :

SE(2) → R+ (obtained from image data) penalizes the curve to move through areas

with low curve saliency. More precisely,

Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = C(γ(t))2

(
ξ2 |ẋ(t) cos θ(t) + ẏ(t) sin θ(t)|2 +

∣∣∣θ̇(t)∣∣∣2) ,
in which parameter ξ balances the cost of moving in spatial direction relative to the

change in orientation. The cost can for example be constructed by means of vesselness

filtering (Subsec. 3.2 and Ch. 6) in order to encourage the curve to follow the vessels.

Curves that solve (3.5) are called sub-Riemannian geodesics. So far we have already

seen examples of sub-Riemannian geodesics in the Figures 2.5, 2.6 and 2.10.

The proposed method for finding shortest (data-adaptive) curves in SE(2) using a

sub-Riemannian geometry has two main advantages over conventional 2D methods:

1. Shortcuts. By solving the shortest path problem in SE(2) short-cuts are less

likely to occur due to the disentanglement of crossing lines in orientation scores.

See for example the left part of Fig. 3.7.

2. Smoothness. By employing a sub-Riemannian geometry (cf. Subsec. 2.1.6 and

Figs. 2.9 and 2.10) we obtain horizontal curves in SE(2) whose projections to

the plane are smooth1. See for example the right part of Fig. 3.7. The amount

of flexibility of the extracted curves can be controlled by a parameter µ that

weights the amount of change in orientation (curvature) with respect to spatial

movement.

1While the curves are smooth in the lifted domain SE(2), their projections to the plane may

contain so-called cusp-points, which are sharp corners with infinite curvature. In the moving

car analogy (Fig. 2.10), such points correspond to putting the car in reverse and continue a

smooth path in the other direction. Our method provides means to detect and analyze the

occurrence of such points and we will discuss this in great detail in Chapter 8.
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Figure 3.7: A comparison of geodesic curves obtained via (anisotropic) fast marching.

Left: A comparison of the standard approach using a Riemannian 2D metric with the

proposed method using a sub-Riemannian metric in SE(2). The top figures show on the

left the source g0 and sink g1 which are to be connected, and on the right the (spatial

projections) of the computed curves. The bottom figure shows a volume rendering of the

SE(2) cost function used, and as a dashed line the obtained geodesic curve in SE(2).

This figure illustrates how the problem of short-cuts that occur at crossings are naturally

dealt with by computing the geodesics in the extended space of positions and orientations.

Right: A comparison of our proposed method using an (isotropic) Riemannian metric

in SE(2) with our proposed method using a sub-Riemannian metric in SE(2). This

figure illustrates how a sub-Riemannian metric in SE(2) results in more natural paths

(and completion of missing data) compared to using a (isotropic) Riemannian metric

in SE(2). Recall from Subsec. 2.1.6 and Figs. 2.9 and 2.10 that horizontal curves are

the natural curves to consider in orientation scores, and that these curves live in a

sub-Riemannian space.
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While sub-Riemannian geodesics are well studied in literature Ben-Yosef & Ben-

Shahar (2012); Boscain et al. (2014); Duits et al. (2013a); Hladky & Pauls (2009);

Mashtakov et al. (2013); Moiseev & Sachkov (2010), no solutions have been provided

for the case where one wants to compute data-adaptive sub-Riemannian geodesics. In

this work we combine the knowledge from sub-Riemannian geodesic literature with nu-

merical approaches for geodesic computation Jbabdi et al. (2008); Lin (2003); Mirebeau

(2014); Péchaud et al. (2009a); Peyré et al. (2010); Sethian (1999); Tsitsiklis (1995),

and provide two methods for computing data-adaptive sub-Riemannian geodesics: a

PDE approach and a fast marching approach.

In Ch. 9 we then extend our method for computing data-adaptive geodesics in

SE(2), to data-adaptive geodesics in SO(3): the group of 3D rotations acting transi-

tively on the sphere S2. The main and first motivation for this extension comes from

the fact that the retina is a spherical object and that it is therefore more natural to

consider spherical image data and include the spherical object geometry in the track-

ing. The group structure of SO(3) allos us to compute smooth (horizontal) curvature

penalized shortest paths on the sphere S2.

The second motivation comes from models of the visual system of mammals. As

mentioned by U. Boscain and F. Rossi Boscain & Rossi (2008) the problem of curvature

penalized geodesics on S2 can be considered an extension of a (flat) cortical based model

for perceptual completion, as proposed by G. Citti, A. Sarti Citti & Sarti (2006) and

J. Petitot Petitot (2003). Such an extension is of course again motivated by the fact

that the retina is not flat.

The third motivation for the study of sub-Riemannian geodesics in SO(3) is that in

geometric control theory optimal synthesis for the sub-Riemannian problem on SO(3)

has not been achieved in the general case (not even for the case of uniform cost C =

1), despite many efforts by Berestovskii (2016, 1994); Beschastnyi & Sachkov (2014);

Bonnard & Chyba (2014); Bonnard et al. (2014); Boscain & Rossi (2008); Calin et al.

(2008); Chang et al. (2009). In Ch. 9 we will not provide optimal synthesis analytically,

but instead we do provide a Hamilton-Jacobi-Bellman theory for computing globally

optimal (data-driven) geodesics.

Method In Ch. 8 we develop the numerical tools for computing data-adaptive SR

geodesics in SE(2), i.e., solving problem (3.5). Such globally optimal curve optimiza-

tion problems are typically solved by first constructing a distance map that assigns to

every possible end-point the distance to the source. Then, each end-point defines a

geodesic curve that can be obtained via steepest descent backtracking (via the Pon-
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tryagin Maximum Principle) on the distance map. In our problem, the distance map

is defined as follows

W (g) = min
γ(t)∈S(e,g)

T∫
0

√
GC |γ(t)(γ̇(t), γ̇(t))dt. (3.6)

Each W (g) gives thus the geodesic distance of point g to the origin e. We provide two

numerical methods for computing distance map W :

• PDE-method. The sub-Riemannian distance map can be obtained as a viscosity

solution of the sub-Riemannian eikonal equation{
‖∇srW (g)‖sr = 1, if g 6= e

W (e) = 0,
(3.7)

where for now we will write abstractly ‖·‖sr for the sub-Riemannian norm, and

∇sr for the (manifold intrinsic) sub-Riemannian gradient, and give full details

in Ch. 8. Initially this partial differential equation (PDE) is solved via a left-

invariant finite-difference discretization of the PDE together with a suitable it-

erative upwind scheme, and updating of initial conditions.

• Fast-marching. In the second part of Ch. 8 the sub-Riemannian eikonal equa-

tion is solved using a fast-marching approach Sethian (1999). Classical fast-

marching based eikonal solvers are not able to deal with the extreme (degenerate)

anisotropy of our sub-Riemannian metric. We solve this numerical issue by con-

sidering a (anisotropic) Riemannian relaxation of the sub-Riemannian problem,

and use a recent state-of-the-art fast-marching eikonal solver that is capable of

dealing with large anisotropies Mirebeau (2014).

Results Both the iterative upwind scheme and the fast-marching approach to solving

the sub-Riemannian eikonal equation (3.6) are compared to the exact solutions for the

case C = 1 (i.e., for the case without data-adaptivity). We find a remarkable accuracy

and convergence toward exact solutions, 1st Maxwell sets (i.e., the location where for

the first time two distinct geodesics of equal length meet), and the cusp surface Boscain

et al. (2014); Duits et al. (2013a).

In Chapter 8 we then also demonstrate the advantage of computing data-adaptive

sub-Riemannian geodesics in SE(2), in comparison with data-adaptive geodesics in R2,

and in comparison with data-adaptive Riemannian geodesics in SE(2) (in which case
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Figure 3.8: A comparison of geodesic tracking methods using (from left to right) an

(isotropic) Riemannian metric in R2, an (isotropic) Riemannian metric in SE(2) and

a sub-Riemannian metric in SE(2).
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we treat the domain SE(2) as a flat 3D Euclidean domain), see respectively the left

and right sub-figure in Fig. 3.7. On a test dataset consisting of retinal image patches

we have annotated in total a challenging set of 184 pairs of begin- and end-points,

and qualitatively and (semi-)quantitatively validated the performance of connecting

these pairs using the three approaches for data-adaptive geodesic computation. A

selection of visual results is given in Fig. 3.8. Out of 184 begin- and end-point pairs

the 2D approach successfully connected 71.7%(132/184) pairs, the Riemannian SE(2)

approach successfully connected 82.6%(152/184) pairs, and the sub-Riemannian SE(2)

method successfully connected 92.4%(170/184). These results confirm the advantage of

using geodesic curve computation in SE(2) over R2, and that of using a sub-Riemannian

metric over Riemannian metric in SE(2).

3.5 Artery-Vein Classification (Ch. 10)

Motivation We complete our tool set for automatic analysis of the retinal vascula-

ture by providing a method for the automatic classification of blood vessels into arteries

and veins. This is an important feature as the arteries and veins are both functionally

and geometrically different and this is to be taken into account in the study of mi-

crovascular changes in relation to disease progression. For example, it is found that a

higher blood pressure is associated with a narrowing of the arteries, whereas the veins

remain relatively1 constant in size Scheie (1953).

Method In Chapter 10 we present a novel method for artery/vein classification which

is based on both local and contextual feature analysis of retinal vessels. Here we describe

local features of each blood vessel in the form of transverse intensity profiles (see e.g. the

lower profile in Fig. 3.5d). A naive Bayes classifier is then used to assign to each classifier

a probability of it being an artery or a vein. Contextual information is provided by the

crossings and bifurcations, which are obtained from the full (topological) vasculature

models (Chapter 7, see e.g., Fig. 3.6). The local and contextual features are integrated

into a non-submodular energy function which is optimized exactly using graph cuts,

this is illustrated in Fig. 3.9.

Results The method is validated on a ground truth data set of 150 retinal fundus

images. On this dataset the method achieves an accuracy of 88.0% for all vessels

and 94.0% for the six arteries and six veins with highest caliber in the image. This

1With very severe hypertension also the veins narrow Akman et al. (1998)).
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Figure 3.9: The developed artery/vein classification method relies on topological mod-

els of the retinal vasculature which are created by the tracking method of Ch. 7. An

optimal labeling of the vascualture (based on both intensity features and contextual in-

formation) is obtained via a graph-cuts approach (cf. Ch. 10).

compares well to accuracy levels acquired with methods in literature that were validated

on different data sets (87.6% Grisan & Ruggeri (2003), 85.5% Li et al. (2003), 88.3%

Dashtbozorg et al. (2014), 88.8% Vazquez et al. (2010)).

3.6 Vessel Feature Analysis (Ch. 11 & 12)

Motivation As motivated in the introduction (Sec. 1.2), one of the main objectives

of this thesis is to develop retinal image processing tools that can be used to assist

large scale clinical research of the retinal microvasculature. I.e., the objective is to be

able to define and compute quantitative biomarkers and study its relation to disease

progression. In Chapters 5 to 10 we have developed the necessary tools that enable the

automatic and semi-automatic analysis of the retinal blood vessels. In the final chapters

of this thesis (Ch. 11 and Ch. 12) we develop new methods for the analysis of blood

vessels and biomarker computation. In contrast to conventional approaches, however,

our aim is to define vessel-based biomarkers by direct analysis of orientation scores

instead of analysis of vessel segmentations/models obtained via extensive processing

pipelines.

For example, vessel tortuosity descriptors are typically computed via an extensive

pipeline (including manual interventions) of image pre-processing, segmentation, thin-

ning and splitting of the vascular network, after which tortuosity values are computed
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from the extracted vessel centerlines Cheung et al. (2012); Hart et al. (1999); Kalitzeos

et al. (2013); Wilson et al. (2008). In such pipelines, errors introduced in each process-

ing step may accumulate, and information might get lost along the way. This might

eventually result in unreliable biomarkers. As an alternative, we propose a reduced

pipeline that does not rely on explicit segmentation of the blood vessels, but instead

computes tortuosity features directly from retinal image data.

The approach that we take is via the construction of feature maps ffeature : R2 →
R that assign to each pixel a value of the feature of interest (e.g. curvature) and

corresponding feature confidence maps cfeature : R2 → R+ that assign to each pixel a

confidence on how reliably the feature measurement is performed. Both maps can than

be used to define global feature measurements, e.g., the weighted average of the feature

values is then given by

µfeature = 1
ctotalfeature

∫
R2

ffeature(x)cfeature(x)dx, with

ctotalfeature =
∫
R2

cfeature(x)dx.

In Chapter 11 we have developed pixel-wise feature measurement methods for the

following features: vessel curvature, vessel caliber and vessel artery-vein class, see

Fig. 3.10. In the next paragraphs we briefly summarize how this is made possible

by direct analysis of orientation scores.

Method Vessel Curvature. The curvature extraction method proposed in Chap-

ter 11 is based on theory of best exponential curve fits in orientation scores. Here the

2D image is first lifted to an orientation score. In the extended domain of positions

and orientations we then study so-called exponential curves, whose curvature values

(of its planar projections) are constant. Such exponential curves are circular spirals

in the domain SE(2), see Subsec. 2.1.6 and Fig. 2.9. By locally fitting exponential

curves to data in orientation scores, we are able to assign to each location a curvature

and measurement-confidence value, which we use to define global tortuosity measures.

Additionally, we improve the accuracy of best-exponential curve fits by proposing a

novel refinement procedure, resulting in more accurate curvature estimations.

Vessel Caliber A property of blood vessels is that both the left and right edge run

parallel to each other, and that (the spatial derivative of) one edge has a different sign

then the opposite edge. In this application of pixel-wise vessel caliber measurements

we make use of two convenient properties of orientation scores:

1. The imaginary part of the orientation score encodes for (oriented) edges. It allows
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3.6 Vessel Feature Analysis (Ch. 11 & 12)

us to detect vessel edges in the orientation score without having to calculate first-

order derivatives perpendicular to the vessel orientation.

2. In orientation score we can make use of the group product on SE(2) to shift data

around. E.g., we can move every voxel in the score to the right by an amount of

r using the right-regular representation (Subsec. 2.3):

(Rgη(r)U)(g) = U(g gη(r)) = U((x, y) + Rθ(0, r), θ),

with g = ((x, y), θ) and gη(r) = ((0, r), 0).

For vessel width measurements in orientation scores we can then use the right-regular

representation Rgr to shift the right edge responses to the left (left-shift), and the left-

edge responses to the right (right-shift) by a certain value for r until the edge responses

overlap. We then define a basic tubularity measure (a likelihood of finding two opposite

edges at distance 2r) as the product of the left- and right-shifted edge responses. An

example result is given in Fig. 3.10 where at the centerline of the blood vessels we have

a maximal response of the tubularity measure for the value of r that corresponds to

the actual vessel radius.

Artery Vein Labeling In Chapter 10 we describe a method for the labeling of arteries

and veins in vascular models. A key ingredient of this method is the local feature

analysis that uses a Bayesian approach to assign to each transversal intensity profile

of the blood vessel a likelihood of it being an artery or a vein. In this chapter we

will do the same, however, instead of relying on precomputed vessel models to define

the transversal intensity profiles we assign to each pixel in the image the most likely

orientation and corresponding radius by looking at which combination r and θ gave

maximal response in the tubularity measure. This allows us to construct transversal

intensity profiles for each pixel in the image, and use the Bayes classifier of Chapter 10

to assign an artery probability to each pixel.

Results In Ch. 11 we show that curvature values can be accurately computed by

fitting exponential curves to data in orientation scores. There we also show via re-

peatability analysis (on repeated patient measurements) that our proposed method for

computing global tortuosity scores was more stable than conventional approaches that

rely on a segmentation-based pipeline. Finally, we used the curvature based biomarkers

obtained via the exponential curve fits in SE(2) in several clinical studies. Our clinical

findings are summarized in the our findings paragraphs of Sec. 1.3.
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Figure 3.10: Illustration of the developed pixel-wise feature analysis algorithms. From

top to bottom: Pixel-wise curvature measurements, pixel-wise vessel width measure-

ments and pixel-wise artery-vein classification. Left: the input image. Right: a color-

coded overlay of the computed features.
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In the final chapter of this thesis (Ch. 12) we propose a new tubularity measure

(Sec. 12.2) and have shown that it can be used to compute new pixel-wise vessel mea-

surements such as vessel width and artery/vein labeling. There we explore new types

of retinal image analyses (and extensions of the methods developed in this thesis) that

are made possible by considering the analysis of tubularity measures and the induces

feature maps. Both in vessel tracking and in connectivity analyses the tools presented

in this chapter can be most helpful. In Ch. 11 the clinical analysis showed that it is

relevant to consider the analysis of vessel geometry for arteries and veins separately.

Therefore, we conjecture that the proposed pixel-wise artery/vein labeling can be of

great interest in further clinical studies, as it allows to compute a wide range of new

(artery/vein specific) biomarkers that can now be computed fully automatically.
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4. SUB-RIEMANNIAN GEOMETRY IN ORIENTATION SCORES

In the previous chapters we motivated why we focus on retinal vascular research

(Chapter 1) and what kind of mathematical tools are used (Chapter 2) in the applica-

tions developed in this thesis (Chapter 3). In Chapter 2 the focus was on an intuitive

description and explanation of the methodologies used in this thesis, namely that of

sub-Riemannian geometry in SE(2). In this chapter we aim to give precise defini-

tions of the mathematical tools that are used in the developed retinal image analysis

applications (Chapters 5 to 12).

4.1 Riemannian Geometry

A manifold is a (topological) set that is locally diffeomorphic to Rn. A Riemannian

manifold is a smooth manifold M with at each element m ∈M an inner product G|m on

the tangent space Tm(M) defined (see Subsec. 2.2.2 for a definition of a tangent space).

Let γ(t) be a curve in M , with γ(0) = m. The length of the tangent vector γ̇(0) is

then given by
√
G|m(γ̇(0), γ̇(0)). The length of arbitrary tangent vectors γ̇(t) is given

by
√
G|γ(t)(γ̇(t), γ̇(t)). The Riemannian distance between any two points m1,m2 ∈M

is given by

d(m1,m2) = inf
γ ∈ C∞([0, 1],M),

γ(0) = m1,

γ(1) = m2

∫ 1

0

√
G|γ(τ)(γ̇(τ), γ̇(τ))dτ. (4.1)

Distances between two points on a manifold are thus defined as the length of the shortest

possible curve connecting the two points, where the total length is measured using all

inner products G|γ(t) along the curve γ. A minimizing geodesic is defined as the curve

minimizing the total curve length measured by G|γ(t) and has length d(m1,m2).

The inner product G|m is a (0,2)-tensor (it takes two tangent vectors and returns a

scalar) and is generally called the metric tensor. In the case of Riemannian geometry,

the metric tensor takes the following form:

G|m(γ̇(t), α̇(t)) =

dim(M)∑
i,j=1

γ̇i(t)α̇j(t)gij(m), (4.2)

in which m = γ(t) ∈ M and γ̇(t), α̇(t) ∈ Tγ(t)(M), with γi and αi the tangent vector

components of γ̇ and α̇ expressed in some n-dimensional bases of Tm(M). The elements

of the metric tensor gij(m) form a positive definite symmetric matrix which varies

smoothly with m ∈ M . We will refer to a distance function d of the form (4.1) as a
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metric on manifold M , and the tensor G|m used to compute such distances the metric

tensor.

Example 3. Euclidean geometry is a special case of Riemannian geometry in which

case M = Rn, the tangent space at each m is spanned by the basis {∂xi}2i=1 with ∂x1 = ∂x

and ∂x2 = ∂y, and the metric tensor is given by the identity matrix, i.e.,

gij(m) = G|m(∂xi , ∂xj ) = δij =

{
1 if i = j

0 if i 6= j
.

The Euclidean distance between two elements x,y ∈ Rn is then given by

d(x,y) = ‖x− y‖,

and its geodesics are straight lines given by γ(t) = x(t− 1)− ty, with 0 ≤ t ≤ 1.

4.2 The Lie Group SE(2) and its Tangent Bun-

dle T (SE(2))

This thesis is primarily concerned with sub-Riemannian geometry on the manifold M =

SE(2) (defined in Subsecs. 4.3.1), and a Riemannian approximation hereof (defined

in Subsecs. 4.3.2). In Chapter 2 we already introduced the Lie group SE(2), first

conceptually in Sec. 2.1, then in more detail in Sec. 2.3. For the sake of convenience,

we first briefly repeat some of the fundamental definitions of the Lie group SE(2) and

its tangent bundle T (SE(2)) in respectively Subsec. 4.2.1 and Subsec. 4.2.2, before

introducing the differential geometrical tools that rely on these definitions.

4.2.1 The Lie Group SE(2)

Recall that the Lie group SE(2) is the three dimensional manifold consisting of the

coupled space R2 o S1 of positions and orientations (cf. Sec. 2.3). Its group elements

are given by

g = (x, θ),

with x = (x, y) ∈ R2 and θ ∈ S1, with S1 the space of rotations. The group product is

given by

g · g′ = (x, θ) · (x′, θ′) = (Rθx
′ + x, θ + θ′).

Recall Sec. 2.3 for more details on the domain of the Lie group SE(2).
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4.2.2 The Tangent Bundle T (SE(2))

Recall from Sec. 2.3 that the tangent space Tg(SE(2)) at each element g ∈ SE(2) is

spanned by a left-invariant basis

Tg(SE(2)) = span{A1|g , A2|g , A3|g},

where Ai|g denotes the vector field Ai restricted to group element g. The left-invariant

vector fields Ai are defined by

A1|(x,y,θ) := cos θ ∂x|(x,y,θ) + sin θ ∂y|(x,y,θ) ,
A2|(x,y,θ) := − sin θ ∂x|(x,y,θ) + cos θ ∂y|(x,y,θ) ,
A3|(x,y,θ) := ∂θ|(x,y,θ) .

For more details on the left-invariant vector fields see Subsecs. 2.2.2 and 2.3.3. Each

element in g ∈ SE(2) is thus associated with a tangent space Tg(SE(2)). The collection

of all tangent spaces Tg(SE(2)) forms a tangent bundle

T (SE(2)) = {Tg(SE(2))}g∈SE(2). (4.3)

Remark 6. Recall from Subsec. 2.2.2 and Remark 5 that the vector fields described in

Eq. (2.42) can be considered as differential operators acting on functions on the group

SE(2).

4.2.3 Horizontal Curves and the Sub-Bundle ∆

Since all tangent vectors are spanned by a left-invariant basis, tangents γ̇(t) ∈ Tγ(t)(SE(2))

along smooth curves t 7→ γ(t) = (x(t), y(t), θ(t)) ∈ SE(2) can be expressed as

γ̇(t) =

3∑
i=1

ui(t) Ai|γ(t) , (4.4)

where the contravariant components ui(t) of the tangents (velocities) can be considered

as control variables1. Note that controls depend on the choice of parametrization.

Throughout this thesis we use the following parameters for curves in SE(2)

• t ∈ [0, T ], metric induced G-arclength parameterization, such that T = d(γ(0), γ(T ))

(see Eq. (4.1)).

1In the formulation of optimal control problems one usually speaks of state variables (e.g.

(x(t), y(t), θ(t)) and control variables (e.g. (u1(t), u2(t), u3(t))).
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• τ ∈ [0, 1], rescaled G-arclength parameterization.

• s ∈ [0, `], spatial arclength parameterization for curves in SE(2) that can be

parameterized by such a parameter (e.g. SR-geodesics whose spatial projections

do not have cusps).

The default is G-arclength parametrization (by t) in SE(2).

In this thesis, however, we will be mainly concerned with horizontal curves, which

have their tangent vectors contained within a sub-bundle ∆ of the full tangent bundle

T (SE(2)). As seen in Sec. 2.1.6 we can lift planar curves γ2D(t) = (x(t), y(t)) in R2

to curves γ(t) = (x(t), y(t), θ(t) in SE(2), simply by taking the orientation of the 2D

tangent vectors as the third coordinate:

θ(t) = arg{ẋ(t) + iẏ(t)}.

Such naturally lifted curves γ are horizontal curves, and their tangent vector compo-

nents are contained within a sub-bundle ∆ defined by

∆ := span{A1,A2}. (4.5)

Accordingly, the tangent vectors γ̇(t) ∈ ∆ can be expressed with just two of the three

control variables ui (as u2 = 0):

γ̇(t) =
∑

i∈{1,3}

ui(t) Ai|γ(t) . (4.6)

4.3 The Left-Invariant Metric Tensor of Interest

4.3.1 The sub-Riemannian Manifold

The sub-Riemannian manifold is defined by the triplet (SE(2),∆,Gξ,C0 ), with domain

SE(2), tangent bundle ∆ (cf. Eq. (4.5)), and with the sub-Riemannian metric tensor

Gξ,C0 : SE(2)×∆×∆→ R given by

Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = C(γ(t))2
(
ξ2|ẋ(t) cos θ(t) + ẏ(t) sin θ(t)|2 + θ̇(t)|2

)
, (4.7)

with γ : R → SE(2) a smooth horizontal curve on R2 o S1, with C : SE(2) → [δ, 1] a

given external smooth cost which is bounded from below by δ > 0. Since orientation

and spatial direction have different physical units, a conversion factor is needed. This

stiffness parameter ξ has unit 1/length. It determines the shape of both exponential
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curves and the geodesics in SE(2). An increase of ξ makes it cheaper to bend curves,

whereas a decrease of ξ makes it cheaper to stretch curves. Mathematically, ξ appears

as the only free parameter in the (sub-)Riemannian metric on SE(2).

Remark 7. Intuitively, a horizontal curve (cf.Fig. 2.9) can be seen as a lifted trajectory

of a (Reeds-Shepp) car Montgomery (2006); Sachkov (2011). The stiffness parameter

ξ puts a relative costs on hitting the gas (i.e. moving in A1-direction) and turning

the wheel (i.e. moving in A3-direction). The external cost included in (4.7) weights

the metric tensor, and 1
C can be interpreted as the speed of the car. The connectivity

property, i.e. any two group elements can be connected by a horizontal curve, reflects

the intuitive fact that in an empty plane, a car can be parked in any position and

orientation.

4.3.2 A Riemannian Approximation of the Sub-Riemannian

Manifold

The sub-Riemannian metric tensor can be approximated by an anisotropic Riemannian

metric tensor Gξ,Cε : SE(2)× T (SE(2))× T (SE(2))→ R given by

Gξ,Cε
∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t))+

C(γ(t))2ε−2 ξ2 |ẋ(t) sin θ(t) + ẏ(t) cos θ(t)|2, (4.8)

in which the additional term penalizes the non-horizontal part of the tangent vectors

γ̇(t), and ε controls the amount of anisotropy betweenA2 and ∆. This definition bridges

the sub-Riemannian case, obtained at the limit ε ↓ 0, with the full Riemannian metric

tensor when ε = 1 (isotropic in the spatial directions A1 and A2), see for example

Fig. 4.1. This is perhaps better seen when we express the tangent vectors γ̇(t) in terms

of control variables ui(t) (cf. Eq. (4.4)) the anisotropic Riemannian metric tensor can

be expressed as follows:

Gξ,Cε
∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = C(γ(t))2
(
ẋξ2|u1(t)|2 + ε−2ξ2|u2(t)|2 + |u3(t)|2

)
. (4.9)

When ε ↓ 0, tangent vector components u2(t) are infinitely punished, and as a result

the minimizing geodesics in

dε(g1, g2) = inf
γ ∈ C∞([0, 1], SE(2)),

γ(0) = g1,

γ(1) = g2

∫ 1

0

√
Gξ,Cε

∣∣∣
γ(τ)

(γ̇(τ), γ̇(τ))dτ, (4.10)
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will have u2(t) = 0, and they will be the sub-Riemannian geodesics.

While the previous paragraph does not formally prove that the limit ε ↓ 0 is valid,

and that it results in sub-Riemannian geodesics, it can be formally shown via a tan-

gential approach to the one in (Chen, 2016, App. A). There Euler elastica curves are

approximated using a numerical scheme (fast marching) that relies on a Finsler metric

which contains a penalization parameter similar to our ε. In Chapter 8 we will go into

extensive detail on the computation of sub-Riemannian geodesics using several meth-

ods, and show that with the anisotropic Riemannian approximation we can compute

near to exact sub-Riemannian geodesics.

4.3.2.1 Matrix Representation in the Cartesian Frame

The anisotropic approximation of the sub-Riemannian metric tensor (Eq. 4.8) can be

described in the standard Cartesian frame using a symmetric positive definite matrix

Mε. This matrix Mε can be obtained by a basis transformation from the left-invariant

frame {A1,A2,A3} as follows:

Mε(γ(t)) =

 cos θ(t) − sin θ(t) 0

sin θ(t) cos θ(t) 0

0 0 1


 ξ2 0 0

0 ξ2ε−2 0

0 0 1


 cos θ(t) − sin θ(t) 0

sin θ(t) cos θ(t) 0

0 0 1


T

.

(4.11)

Here the diagonal matrix in the middle encodes the anisotropy between the Ai direc-

tions, while the other 2 rotation matrices are the basis trasnformation. The metric

tensor can then be written as

Gξ,Cε
∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = C(γ(t))2 γ̇(t)TMε(γ(t))γ̇(t),

with γ̇(t) = (ẋ(t), ẏ(t), θ̇(t)) expressed in the fixed frame. Each matrix M(g) is sym-

metric positive definite, and can be visulalized as an ellipsoid (Fig. 4.1). Such ma-

trix representation is a convenient form to use in numerical approaches for computing

geodesics. In Ch. 8 for example we use this matrix representation to compute (approx-

imate) sub-Riemannian geodesics using a Fast Marching solver that can deal with large

anisotropies (ε� 1).
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Figure 4.1: Each ellipsoid represents the Tissot’s indicatrix of the metric Gξε at dif-

ferent elements g ∈ SE(2) (for the case ξ = 1). The parameter ε in Eqs. (4.8) and

(4.9) bridges the Riemannian case with the sub-Riemannian one. When ε = 1 each

direction has the same cost. At the limit ε ↓ 0, the direction A2 has infinite cost and

the distribution ∆ appears.

4.4 The Co-Tangent Bundle T ∗(SE(2)) and Dif-

ferential Forms

Co-vectors are elements of the co-tangent spaces T ∗g (SE(2)) = span{ω1
∣∣
g
, ω2

∣∣
g
, ω2

∣∣
g
}.

They are (continuous) linear functionals on the tangent space. The dual basis {ωi} is

defined via the Kronecker product

〈ωi,Ai〉 = δij , with δij =

{
1 if i = j

0 if i 6= j
, (4.12)

which gives

ω1 = cos θdx + sin θdy,

ω2 = − sin θdx + cos θdy,

ω3 = dθ,

(4.13)

Example 4. In the R2 case, where tangent spaces are spanned by the basis {∂xi}2i=1

with

∂x1 = ∂x, ∂x2 = ∂y,

the basis of co-tangent spaces is defined via 〈ωi, ∂xi〉 = δij as

ω1 = dx, ω2 = dy. (4.14)

In 2D image analysis the most commonly known co-vector is the derivative operator

acting on images f ∈ L2(R2), given by

df = (∂xf)dx+ (∂yf)dy.
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For a directional derivative at m in the direction v(m) we have

〈df(m), v(m)〉 := df |m (v(m))

where brackets just denote functional evaluation.

Now given the metric tensor G|m at m ∈M one defines the gradient ∇f(m) uniquely

by:

〈df(m), v(m)〉 = G|m(∇f(m), v(m)) for all v(m) ∈ Tm(M).

In view of the famous Riesz representation theorem, we say that the gradient of f at m

(which is a tangent vector in Tm(M)) equals the Riesz representative of the derivative

of f at m (which is a covector in T ∗m(M)).

Now it is common to identify the metric tensor with the corresponding linear map

from tangent bundle to cotangent bundle, in which case one typically writes

∇f(m) = G−1
m df(m).

This is also referred to as the ‘manifold intrinsic gradient’, as it is the gradient induced

by the metric tensor (and not the gradient w.r.t. a flat metric in some flat embedding

space).

Our Riemannian metric tensor Gξ,Cε on SE(2), given in (4.8), is expressed in the

basis of left-invariant vector fields and an expression of the derivative of U at g ∈ SE(2)

is given by

dU(g) =
3∑
i=1

(Ai|g U) ωi
∣∣
g
, (4.15)

whereas the gradient is defined as

∇εU(g) = Gξ,Cε
−1
∣∣∣
g
dU(g) =

3∑
i=1

ξ−2
i C(g)−2

(
Ai|g U

)
ωi
∣∣
g

(4.16)

with ξ1 = ξ, ξ2 = ξ/ε and ξ3 = 1. The sub-Riemannian gradient, based on the sub-

Riemannian metric tensor Gξ0 given in (4.7), is defined as

∇SRU(g) := ∇0U(g) = lim
ε→0
∇εU(g) =

∑
i∈{1,3}

ξ−2
i C(g)−2

(
Ai|g U

)
ωi
∣∣
g
. (4.17)

Remark 8. When expressing the derivative in the moving dual frame one must keep

in mind that the moving dual frame is not an exact frame. An exact differential k-form

is a differential form that is the exterior derivative of another differential (k− 1)-form.

In the R2 case the co-vectors ωi (see Example 4) are exact 1-forms, obtained by taking
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the exterior derivative of a 0-form, i.e. a smooth differentiable function on R2. Exact

forms, such as the ones in (4.14), are also closed since

dω1 = ddx = 0.

In SE(2) this is not the case for the local dual frame {ωi}3i=1 defined in (4.13). For

example

dω1 = d(cos θ dx+ sin θ dy)

= − sin θ dθ ∧ dx+ cos θ dθ ∧ dy

= dθ ∧ (− sin θdx+ cos θdy)

= c1
23 (ω2 ∧ ω3) 6= 0

This shows that the left-invariant coframe varies along the Lie group and in general

(on Lie groups) we have the structural formulas of Cartan:

dωk =
∑
i,j

1

2
ckij(ω

i ∧ ωj). (4.18)

4.5 Short 6= Straight: the Left Cartan Connec-

tion

4.5.1 Connections

With the left-invariant vector fields and covector fields defined, we can now define

derivatives on images and orientation scores. For example we have seen (Example 4)

that we can use left-invariant derivatives to compute the derivative of an image or

an orientation score, and that the result is a covectorfield. If we would like to define

second order differential operators (such as the Hessian), we need to know how to

take (directional) derivatives of such vector fields. The way this is done is defined in

connections, which are also often referred to as covariant derivatives. To indicate

the directional derivative of a vector field Y , along vector field X as defined via the

connection ∇ we write ∇XY .

Given two vector fields X and Y on a manifold (M,G) expressed in a basis ∂xi , i.e.,

X|m =

dim(M)∑
i=1

xi(m) ∂xi |m , and Y |m =

dim(M)∑
i=1

yi(m) ∂xi |m , (4.19)

and with corresponding covector basis ωi, a connection takes the following form

∇XY :=

dim(M)∑
k=1

ẏk +

dim(M)∑
i,j=1

Γkijx
iyi

 ∂xk , (4.20)
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with ẏk the directional derivative along direction vector X|m of the kth component of

the vector Y |k given by

ẏk
∣∣∣
m

:= dyk
∣∣∣
m

(X|m),

and with the derivative of yk given by

dyk
∣∣∣
m

=

dim(M)∑
i=1

(∂xi |m y
k) ωi

∣∣
m
.

In (4.20), the first term ẏk is thus the directional derivative (along X) of the separate

components of the vector field Y . The second term compensates for motion of the

moving frame of reference and is characterized by the Christoffel symbols Γkij . In

principle the choice for Christoffel symbols is free, and each choice defines as different

connection, i.e., a different way of taking covariant derivatives. In the subsequent

subsections we consider two types of connections: the Levi-Civita connection and the

left Cartan connection, of which we will see in Subsec. 4.5.4 that the latter is of most

interest to us.

4.5.2 The Levi-Civita Connection

Usually in Riemannian geometry people work with the Levi-Civita connection ∇LC ,

which is the unique torsion free metric compatible1 connection on the Riemannian

manifold (M,G). The requirement that the connection should be torsion free means

that

T (X,Y ) = ∇XY −∇YX − [X,Y ] = 0.

Under these conditions the Levi-Civita connection is uniquely defined (fundamental

theorem of Riemannian geometry), and the Christoffel symbols are then given by

(ΓLC)kij =
1

2

dimM∑
m=1

gim
(
∂gmk
∂xl

+
∂gml
∂xk

− ∂gkl
∂xm

)
(4.21)

and with matrix [gij ] = [G(∂xi , ∂xj )] and [gij ] the corresponding inverse matrix.

For the Levi-Civita connection we have that stationary curves of

min
γ ∈ C∞(R,M)

γ(0) = m0

γ(1) = m1

∫ 1

0

√
G|γ(τ) (γ̇(τ), γ̇(τ))dτ, (4.22)

1Metric compatible means ∇XG(Y, Z) = G(∇XY, Z) + G(Y,∇XZ)
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satisfy the following geodesic equations

∇LCγ̇ γ̇ = 0, (4.23)

see e.g. (Jost, 2011, Lemma 5.1.1). Expressed in holonomic coordinates {xi}dim(M)
i=1

this gives

γ̈k +

dim(M)∑
i,j=1

(ΓLC)kij γ̇
iγ̇j = 0, with γ̇k = 〈ωk

∣∣∣
γ
, γ̇〉, γ̈k =

d

dt
γ̇k.

In general, curves for which∇γ̇ γ̇ = 0 are called auto parallel curves with respect to

the connection ∇. The auto parallel curves with respect to the Levi-Civita connection

∇LC are the geodesics, which in the standard Euclidean case are straight lines as we

show in the next example.

Example 5. Consider the standard 2D Euclidean setting with M = R2, with the metric

gij = δij, and with the standard basis {∂xi}2i=1. Since the metric tensor gij is constant

over M , the Christoffel symbols (computed via (4.21)) are given by

Γkij = 0.

The geodesic equations then write

γ̈k(t) = 0,

γ̇k(t) = ck.

The geodesics in a Riemannian manifold with constant metric tensor gij, such as in

the Euclidean manifold, are thus straight lines.

In the 2D Euclidean case the straight curves and shortest curves (geodesics) co-

incide, and both are auto parallel curves with respect to the Levi-Civita connection.

In our sub-Riemannian geometry on SE(2) this is not the case! Here we deal with a

curved geometry (in which case Γkij 6= 0) and the ”straight curves” and shortest curves

no longer coincide. As we will see in the next Subsection, the straight curves (the

exponential curves) are instead the auto parallel curves with respect to the Cartan

connection ∇.

4.5.3 The Left Cartan Connection on SE(2)

Consider the Riemannian manifold M = (SE(2),Gξε ). Recall that our left-invariant

vector fields (2.42) are obtained from the basis {∂x|e , ∂y|e , ∂θ|e} in Te(SE(2)) by the
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push-forward (Lg)∗ of the left-multiplication Lg. Conversely, we can use the so-called

Maurer-Cartan form (L−1
g )∗ to map all Tg(SE(2)) back to Te(SE(2)). This allows us to

‘connect’ all tangent spaces in a principle fiber bundle structure Spivak (1999). When

using the adjoint representation for the associated vector bundle (Duits & Franken,

2010b, App.B) one obtains the left Cartan connection on the tangent bundle. Here

we just provide the resulting Cartan connection ∇ on the tangent bundle (and provide

some intuitive explanations):

∇γ̇Y :=

3∑
k=1

(
ẏk + dωk

∣∣∣
γ(t)

(γ̇(t), Y )

)
Ak, (4.24)

with dωk
∣∣
γ(t)

(γ̇(t), Y ) ∈ R, recall (4.18), and with

ẏk(t) :=
d

dt
yk(t) :=

d

dt
ωk
∣∣∣
γ(t)

(Y |γ(t)),

which produces a vector field ∇γ̇Y that indicates the covariant derivative of vector field

Y along the flow-field of γ.

The intuition is that this covariant derivative (4.24) takes into account that, when

taking the covariant derivative of vector field Y , one differentiates its components

yk(t) := ωk
∣∣∣
γ(t)

(Y |γ(t)),

and simultaneously accounts for the movement of the (dual) left-invariant frame (recall

Cartan’s structural formula (4.18)).

Expressed in components of the left-invariant frame and coframe this becomes (via

Cartan’s structural formula (4.18)):

∇γ̇Y :=
3∑

k=1

ẏk − 3∑
i,j=1

ckij γ̇
iyj

Ak. (4.25)

So now instead of the Christoffels in (4.21) we have Christoffel symbols that are minus

the structure constants Γkij = −ckij . Since ckij = −ckji we have that
3∑

i,j=1
ckij γ̇

iyj = 0 and

see that the auto parallel curves are the exponential curves as defined in Eq. (2.29) on

page 44:

∇γ̇ γ̇ = 0 ⇔

{
γ̈k(t) = 0,

γ̇k(t) = ck.
.

By duality, connection ∇ on the tangent bundle induces also a connection ∇∗ on

the cotangent bundle:

∇∗γ̇λ =
3∑
i=1

λ̇i +
3∑

j,k=1

ckijλkγ̇
j

ωi, (4.26)

89
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with a sign change before the Christoffels, and with λ̇i(t) = d
dt〈λ|γ(t) , Ai|γ(t)〉. The

formula (4.26), follows by ckij = −ckji, (4.24), and

0 =
d

dt
δij =

d

dt
〈ωi
∣∣
γ(t)

, Aj |γ(t)〉 = 〈∇∗γ(t)ω
i
∣∣∣
γ(t)

, Aj |γ(t)〉+ 〈ωi
∣∣
γ(t)

, ∇γ(t)Aj
∣∣
γ(t)
〉

where brackets denote functional evaluation (not inner-products).

For the sub-Riemannian case one has a direct hard constraint Y ∈ ∆ on the tangent

bundle (but not on the co-tangent bundle) and one has to rely on a partial connection

∇ instead:

∇γ̇Y :=
∑

k∈{1,3}

(
ẏk −

∑
i,j∈{1,3}

ckij γ̇
iyj

)
Ak,

∇∗γ̇λ :=
3∑
i=1

(
λ̇i +

∑
j∈{1,3}

3∑
k=1

ckijλkγ̇
j

)
ωi.

(4.27)

4.5.4 Why Do We Use the Left Cartan Connection?

Now that we introduced the Cartan connection let us see why it is a useful connection

for our purposes. Here we list its nice properties:

• ‘Straight curves’, i.e. solutions to ∇γ̇ γ̇ = 0, are the exponential curves as we

considered in Subsec. 2.2.3. Left-invariant PDE’s on SE(2) that we shall consider

in this thesis (hypo-elliptic diffusions in Ch. 5 and wavefront propagation in Ch. 8)

can be expressed in covariant derivatives and left-invariant flow; transport takes

place along these curves.

• ‘Shortest curves’, i.e., minimizers to (4.1) have instead parallel momentum∇∗γ̇λ =

0. This can be observed by the nested sub-Riemannian spheres, where we note

that covectors may be geometrically represented by local parallel planes, see for

example Fig. 4.2. The property of parallel momentum follows from the definition

of the Cartan connection∇∗ and Pontryagin’s maximum principle (see e.g. (Duits

et al., 2014, Thm. 5.2)), which we use in Ch. 8 in the computation of sub-

Riemannian geodesics in SE(2).

• When considering second order best exponential curve fits for determining locally

adaptive frames Duits & Janssen et al. (2016), which we employ for both ves-

sel enhancement (Chapter 6) and vessel curvature measurements (Chapter 11),

curve fitting boils down to eigenvector analysis of Hessians induced by this very

connection (Duits & Janssen et al., 2016, App. 4).
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Figure 4.2: A: Geodesically equidistant surfaces Sεt = {g ∈ SE(2)|dε(0, g) = t} and

geodesic (in green) for the sub-Riemannian case: ε = 0 and C = 1. B: Geodesically

equidistant surfaces Sεt and geodesic for the isotropic Riemannian case: ε = 1 and

C = 1. Now the geodesics are straight lines. C: A set of horizontal exponential curves

for which γ̇(t) = c1 A1|γ(t) + c3 A3|γ(t) ∈ ∆, with constant tangent vector components

c1 and c3.
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• It correctly accounts for the motion of the moving frame of reference when taking

derivatives of vector fields and covector fields.

In summary we have the following equivalences.

Theorem 1. In a Riemannian manifold (SE(2), T (SE(2)),Gξε ), with the tangent bun-

dle T (SE(2)) defined in (4.3), with the metric tensor Gξε defined in (4.8), the metric dε

defined in (4.10), and the Cartan connection defined in (4.24), we have the following

relations for ”straight” curves:

γ is a ∇-straight

curve
⇔ γ is an exponential

curve
⇔ ∇γ̇ γ̇ = 0 ⇔ γ has ∇-auto

parallel velocity
,

and the following for ”shortest” curves:

γε is a shortest

curve
⇔ γε is a minimizing

curve in dε
⇔

{
∇∗γ̇ελε = 0

Gξε
−1
γ̇ε = λε

⇔ γε has ∇∗-parallel

momentum
.

In a sub-Riemannian manifold (SE(2),∆,Gξ0) with tangent bundle ∆ defined in (4.5),

the sub-Riemannian metric tensor Gξ0 defined in (4.7), and the partial Cartan connec-

tion defined in (4.27) we have the following relations for ”straight” curves

γ is a ∇-straight

curve
⇔ γ is a horizontal

exponential curve
⇔ ∇γ̇ γ̇ = 0 ⇔ γ has ∇-auto

parallel velocity
,

and the following for ”shortest” curves

γ0 is a shortest

curve
⇔ γ0 is a minimizing

curve in d0
⇔
{
∇∗γ̇0λ0 = 0

Gξ0
−1
γ̇0 = P∗∆λ0

⇔ γ0 has ∇∗-parallel

momentum
,

in which P∗∆(λ1ω
1 + λ2ω

2 + λ3ω
3) = λ1ω

1 + λ3ω3.
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Chapter 5

Retinal Landmark Detection

This chapter is based on:

Bekkers, E.J., Loog, M., ter Haar Romeny, B.M., Duits, R.: Template matching via densities

on the roto-translation group. arXiv preprint arXiv:1603.03304 (2016)

Bekkers, E., Duits, R., Loog, M.: Training of templates for object recognition in invertible

orientation scores: Application to optic nerve head detection in retinal images. In Tai,

X.C., Bae, E., Chan, T., Lysaker, M., eds.: Energy Minimization Methods in Com-

puter Vision and Pattern Recognition (EMMCVPR). Volume 8932 of Lecture Notes in

Computer Science. Springer International Publishing (2015) 464477

Bekkers, E., Duits, R., ter Haar Romeny, B.: Optic nerve head detection via group correlations

in multi-orientation transforms. In Campilho, A., Kamel, M., eds.: Image Analysis and

Recognition (ICIAR). Volume 8815 of Lecture Notes in Computer Science. Springer

International Publishing (2014) 293-302
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5.1 Introduction

In this chapter we describe a new cross-correlation based template matching scheme for

the detection of objects characterized by orientation patterns. Our main application of

interest is that of optic nerve head and fovea detection in retinal images. However, as

we will show with an additional application to pupil detection in webcam images, the

method is more generally applicable to the detection of objects that are characterized

by curvilinear structures.

As one of the most basic forms of template matching, cross-correlation is intuitive,

easy to implement, and due to the existence of optimization schemes for real-time pro-

cessing a popular method to consider in computer vision tasks Yoo & Han (2009).

However, as intensity values alone provide little context, cross-correlation for the de-

tection of objects has its limitations. More advanced data representations may be

used, e.g. via wavelet transforms or via feature descriptors Azzopardi & Petkov (2013);

Bay et al. (2006); Dalal & Triggs (2005); Felsberg (2013); Lowe (1999); Viola & Jones

(2001). However, then standard cross-correlation can usually no longer be used and

one typically resorts to classifiers, which take the new representations as input feature

vectors. While in these approaches the detection performance often increases with the

choice of a more complex representation, so does the computation time. In contrast,

in this chapter we stay in the framework of template matching via cross-correlation

while working with a contextual representation of the image. To this end, we lift an

image f : R2 → R to an invertible orientation score Uf : R2 o S1 → C via a wavelet-

type transform using anisotropic filters (Sec. 2.1). Cross-correlation based template

matching is then defined via L2 inner-products of a template T ∈ L2(SE(2)) and an

orientation score Uf ∈ L2(SE(2)). In this chapter we learn templates T by means of

generalized linear regression.

In the R2-case (which we later extend to orientation scores, the SE(2)-case), we

define templates t ∈ L2(R2) via the optimization of energy functionals of the form

t∗ = argmin
t∈L2(R2)

{E(t) := S(t) +R(t)} , (5.1)

where the energy functional E(t) consists of a data term S(t), and a regularization term

R(t). Since the templates optimized in this form are used in a linear cross-correlation

based framework, we will use inner products in S, in which case (5.1) can be regarded

as a generalized linear regression problem with a regularization term. For example,

(5.1) becomes a regression problem generally known under the name ridge regression
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Figure 5.1: A retinal image f of the optic nerve head and a volume rendering of the

orientation score Uf (obtained via a wavelet transform Wψ).

Hoerl & Kennard (1970), when taking

S(t) =

N∑
i=1

(
(t, fi)L2(R2) − yi

)2
, and R(t) = µ‖t‖2L2(R2),

where fi is one of N image patches, yi ∈ {0, 1} is the corresponding desired filter

response, and where µ is a parameter weighting the regularization term. The regression

is then from an input image patch fi to a desired response yi, and the template t can be

regarded as the “set of weights” that are optimized in the regression problem. In this

chapter we consider both quadratic (linear regression) and logistic (logistic regression)

losses in S. In order to include regularization we consider terms of the form

R(t) = λ

∫
R2

‖∇t(x)‖2dx + µ‖t‖2L2(R2),

and thus combine the classical ridge regression with a smoothing term (weighted by

parameters λ > 0 and µ > 0 which we will set automatically by a generalized cross

validation method in Subsec. 5.5.1.3).

In our extension of smoothed regression to orientation scores we employ similar

techniques. However, here we must however take care of the curved geometry (Sub-

sec. 2.1.6) on the domain SE(2). Accordingly, we must work with a rotating derivative

frame (instead of axis aligned derivatives) that is aligned with the group elements

(x, θ) ∈ SE(2), see e.g. the {A1,A2,A3}-frames in Fig. 5.2. This left-invariant frame
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Figure 5.2: In orientation scores Uf , constructed from an image f via the ori-

entation score transform Wψ, we make use of a left-invariant derivative frame

{A1|g , A2|g , A3|g} attached to each g = (x, y, θ) ∈ SE(2). Three slices and the corre-

sponding left-invariant frames are shown separately (at θ ∈ {0, π4 ,
3π
4 }).

(defined in Eq. 2.42) allows for (anisotropic) smoothing along oriented structures. As

we will show in this chapter (and in more detail in App. 5.4), the proposed smooth-

ing scheme has the probabilistic interpretation of time integrated Brownian motion on

SE(2) Duits & Franken (2010a); Zhang et al. (2016b).

Regression and Group Theory Regularization in (generalized) linear regression

generally leads to more robust classifiers/regressions, especially when a low number of

training samples are available. Different types of regularizations in regression problems

have been intensively studied in e.g. Cuingnet et al. (2013); Hastie et al. (2009);

Hebiri & van de Geer (2011); Qazi et al. (2010); Xu et al. (2009), and the choice for

regularization-type depends on the problem: E.g. L1-type regularization is often used

to sparsify the regression weights, whereas L2-type regularization is more generally

used to prevent over-fitting by penalizing outliers (e.g. in ridge regression Hoerl &

Kennard (1970)). Smoothing of regression coefficients by penalizing the L2-norm of

the derivative along the coefficients is less common, but it can have a significant effect

on performance Cuingnet et al. (2013); Li & Li (2008).

We solve problem (5.1) in the context of smoothing splines: We discretize the

problem by expanding the templates in a finite B-spline basis, and optimize over the

spline coefficients. For d-dimensional Euclidean spaces, smoothing splines have been

well studied De Boor (1978); Green & Silverman (1993); Unser (1999); Unser et al.

(1993). In this chapter, we extend the concept to the curved space SE(2) and provide
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explicit forms of the discrete regularization matrices. Furthermore, we show that the

extended framework can be used for time integrated Brownian motions on SE(2), and

show near to perfect comparisons to the exact solutions found in Duits & Franken

(2010a); Zhang et al. (2016b).

In general, statistics and regression on Riemannian manifolds are powerful tools

in medical imaging and computer vision Miolane & Pennec (2015); Pennec (2006);

Thomas Fletcher (2013); Vidal et al. (2005). More specifically, in pattern matching

and registration problems, Lie groups are often used to describe deformations. E.g.

in Tuzel et al. (2008) the authors learn a regression function Rm → A(2) from a

discrete m-dimensional feature vector to a deformation in the affine group A(2). Their

purpose is object tracking in video sequences. This work is however not concerned

with deformation analysis, we instead learn a regression function L2(SE(2))→ R from

continuous densities on the Lie group SE(2) (obtained via an invertible orientation

score transform) to a desired filter response. Our purpose is object detection in 2D

images. In our regression we impose smoothed regression with a time-integrated hypo-

elliptic Brownian motion prior and thereby extend least squares regression to smoothed

regression on SE(2) involving first order variation in Sobolev-type of norms.

Application Area of the Proposed Method The strength of our approach is

demonstrated with the application to anatomical landmark detection in medical retinal

images and pupil localization in regular camera images. In the retinal application we

consider the problem of detecting the optic nerve head (ONH) and the fovea. Many

image analysis applications require the robust, accurate and fast detection of these

structures, see e.g. Gegundez-Arias et al. (2013); Hansen & Ji (2010); Patton et al.

(2006); Ramakanth & Babu (2014). In all three detection problems the objects of in-

terest are characterized by (surrounding) curvilinear structures (blood vessels in the

retina; eyebrow, eyelid, pupil and other contours for pupil detection), which are conve-

niently represented in invertible orientation scores. The invertibility condition implies

that all image data is contained in the orientation score Duits et al. (2007a)Bekkers

et al. (2014a). With the proposed method we achieve state-of-the-art results both

in terms of detection performance and speed: high detection performance is achieved

by learning templates that make optimal use of the line patterns in orientation scores;

speed is achieved by a simple, yet effective, cross-correlation template matching ap-

proach.

Contribution of This Work. This work builds upon two published conference

papers Bekkers et al. (2014b, 2015a). In the first we demonstrated that high detec-

tion performance could be achieved by considering cross-correlation based template
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matching in SE(2), using only handcrafted templates and with the application of ONH

detection in retinal images Bekkers et al. (2014b). In the second we then showed on

the same application that better performance could be achieved by training templates

using the optimization of energy functionals of the form of (5.1), where then only a

(left-invariant) smoothing regularizer was considered Bekkers et al. (2015a). In this

chapter we provide a complete framework for training of templates and matching on

SE(2) and contribute to literature by:

1. Extending the linear regression SE(2) framework Bekkers et al. (2015a) to logistic

regression.

2. Studying different types of regression priors, now introducing also a ridge regres-

sion prior.

3. Establishing a link of the SE(2) smoothing prior with hypo-elliptic diffusion

equations on SE(2).

4. Showing state-of-the-art performance on two new benchmark applications: fovea

and pupil detection.

5. Improving previous results on ONH detection.

6. Making the developed code publicly available at http://erikbekkers.bitbucket.

io/TMSE2.html.

Chapter Outline The remainder of this chapter is organized as follows. In Sec. 5.2

we provide the theory for template matching and template construction in the R2-case.

The theory is then extended to the SE(2)-case in Sec. 5.3. Additionally, in Sec. 5.4

we provide a probabilistic interpretation of the proposed SE(2) prior, and relate it to

Brownian motions on SE(2). In Sec. 5.5 we apply the method to retinal images for

ONH (Subsec. 5.5.2) and fovea detection (Subsec. 5.5.3), and to regular camera images

for pupil detection (Subsec. 5.5.4). Finally, we conclude the chapter in Sec. 5.6.

5.2 Template Matching & Regression on R2

5.2.1 Object Detection via Cross-Correlation

We are considering the problem of finding the location of objects (with specific orienta-

tion patterns) in an image. While in principle an image may contain multiple objects
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of interest, the applications discussed in this chapter only require the detection of one

object per image. We search for the most likely location

x∗ = argmax
x∈R2

P (x), (5.2)

with P (x) ∈ R denoting the objective functional for finding the object of interest at

location x. We define P based on inner products in a linear regression and logistic

regression context, where we respectively define P by

P (x) = PR2

lin (x) := (Tx t, f)L2(R2), (5.3)

or
P (x) = PR2

log(x) := σ
(
(Tx t, f)L2(R2)

)
,

with σ(x) = ex/(1 + ex),
(5.4)

where Tx denotes translation by x via

(Txt)(x̃) = t(x̃− x),

and where the L2(R2) inner product is given by

(t, f)L2(R2) :=

∫
R2

t(x̃)f(x̃)dx̃, (5.5)

with associated norm ‖·‖L2(R2) =
√

(·, ·)L2(R2). For a generalization of cross-correlation

based template matching to normalized cross correlation (not used in this chapter), we

refer the reader to App. A.2.

5.2.2 Optimizing t Using Linear Regression

Our aim is to construct templates t that are “aligned” with image patches that contain

the object of interest, and which are orthogonal to non-object patches. Hence, template

t is found via the minimization of the following energy

Elin(t) =
N∑
i=1

(
(t, fi)L2(R2) − yi

)2
+ λ

∫
R2

‖∇t(x̃)‖2dx̃ + µ ‖t‖2L2(R2), (5.6)

with fi one of the N training patches extracted from an image f , and yi the correspond-

ing label (yi = 1 for objects and yi = 0 for non-objects). In (5.6), the data-term (first

term) aims for alignment of template t with object patches, in which case the inner

product (t, fi)L2(R2) is ideally one, and indeed aims orthogonality to non-object patches

(in which case the inner product is zero). The second term enforces spatial smoothness

of the template by penalizing its gradient, controlled by λ. The third (ridge) term

improves stability by suppressing the L2-norm of t, controlled by µ.
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5.2.3 Optimizing t Using Logistic Regression

In object detection we are essentially considering a two-class classification problem:

the object is either present or not. In this respect, the quadratic loss term in (5.6)

might not be the best choice as it penalizes any deviation from the desired response yi,

regardless of whether or not the response (t, fi)L2(R2) is on the correct side of a decision

boundary. In other words, the aim is not necessarily to construct a template that best

maps an image patch fi to a response yi ∈ {0, 1}, but rather the aim is to construct a

template that best makes the separation between object and non-object patches. With

this in mind we resort to the logistic regression model, in which case we interpret the

non-linear objective functional given in (5.4) as a probability, and define

p1(fi ; t) = p(fi ; t),

p0(fi ; t) = 1− p(fi ; t),

with p(fi ; t) = σ
(
(t, fi)L2(R2)

)
,

(5.7)

with p1(fi; t) and p0(fi; t) denoting respectively the probabilities of a patch fi being

an object or non-object patch, and σ given by (5.4). Our aim is now to maximize the

likelihood (of each patch fi having maximum probability pyi(fi; t) for correct label yi):

`(t) =

N∏
i=1

pyi(fi; t) =

N∏
i=1

p(fi; t)
yi(1− p(fi; t))1−yi . (5.8)

We maximize the log-likelood instead, which is given by

`log(t) := log( `(t) )

=
N∑
i=1

log( p(fi; t)
yi(1− p(fi; t))1−yi )

=
N∑
i=1

yi(t, fi)L2(R2) − log
(

1 + e
(t,fi)L2(R2)

)
.

(5.9)

Maximizing (5.9) is known as the problem of logistic regression. Similar to the linear

regression case, we impose additional regularization and define the following regularized

logistic regression energy, which we aim to maximize:

E`log(t) = `log(t)− λ
∫
R2

‖∇t(x̃)‖2dx̃− µ ‖t‖2L2(R2). (5.10)
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5.2.4 Template Optimization in a B-Spline Basis

5.2.4.1 Templates in a B-Spline Basis

In order to solve the optimizations (5.6) and (5.10), the template is described in a basis

of direct products of n-th order B-splines Bn:

t(x, y) =

Nk∑
k=1

Nl∑
l=1

ck,l B
n

(
x

sk
− k
)
Bn

(
y

sl
− l
)
, (5.11)

with Bn(x) =
(

1[− 1
2
, 1
2 ] ∗

(n) 1[− 1
2
, 1
2 ]

)
(x) a n-th order B-spline obtained by n-fold convo-

lution of the indicator function 1[− 1
2
, 1
2 ], and ck,l the coefficients belonging to the shifted

B-splines. Here sk and sl scale the B-splines and typically depend on the number Nk

and Nl of B-splines to sample the domain.

5.2.4.2 Linear Regression

By substitution of (5.11) into (5.6), the energy functional can be expressed in matrix-

vector form (see App. A.1):

EBlin(c) = ‖Sc− y‖2 + λ c†Rc + µ c†Ic. (5.12)

Regarding our notations we note that for spatial template t given by (5.11) we have

Elin(t) = EBlin(c), and label ‘B’ indicates finite expansion in the B-spline basis. The

minimizer of (5.12) is given by

(S†S + λR + µI)c = S†y, (5.13)

with † denoting the conjugate transpose, and I denoting the identity matrix. Here S is

a [N ×NkNl] matrix given by

S = {(si1,1, ..., si1,Nl , s
i
2,1, ..., s

i
2,Nl

, ..., ..., siNk,Nl)}
N
i=1,

sk,l = ( Bn
sksl
∗ fi )(k, l),

(5.14)

with Bn
sksl

(x, y) = Bn
(
x
sk

)
Bn
(
y
sl

)
, for all (x,y) on the discrete spatial grid on which

the input image fD : {1, Nx} × {1, Ny} → R is defined. Here Nk and Nl denote the

number of splines in resp. x and y direction, and sk = Nx
Nk

and sl =
Ny
Nl

are the

corresponding resolution parameters. The [NkNl × 1] column vector c contains the

B-spline coefficients, and the [N × 1] column vector y contains the labels, stored in the

following form

c = (c1,1, ..., c1,Nl , c2,1, ..., c2,Nl , ..., ..., cNk,Nl)
T

y = (y1, y2, ..., yN )T .
(5.15)
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The [NkNl ×NkNl] regularization matrix R is given by

R = Rsk
x ⊗Rsl

x + Rsk
y ⊗Rsl

y , (5.16)

where ⊗ denotes the matrix Kronecker product, and with

Rsk
x (k, k′) := − 1

sk
∂2B2n+1

∂x2
(k′ − k),

Rsl
x (l, l′) := slB

2n+1(l′ − l),
Rsk
y (k, k′) := skB

2n+1(k′ − k),

Rsl
y (l, l′) := − 1

sl
∂2B2n+1

∂y2
(l′ − l),

(5.17)

with k, k′ = 1, 2, ..., Nk and l, l′ = 1, 2, ..., Nl. The coefficients c can then be computed

by solving (5.13) directly, or via linear system solvers such as conjugate gradient descent.

For a derivation of the regularization matrix R we refer to App. A.1.

5.2.4.3 Logistic Regression

The logistic regression log-likelihood functional (5.10) can be expressed in matrix-vector

notations as follows:

E`,Blog (c) =
[
y†Sc− 1†N log(1N + exp(Sc))

]
− λ c†Rc− µ c†Ic, (5.18)

where 1N = {1, 1, ..., 1}T ∈ RN×1, and where the exponential and logarithm are eval-

uated element-wise. We follow a standard approach for the optimization of (5.18), see

e.g. Hastie et al. (2009), and find the minimizer by setting the derivative to c to zero

∇cE
`,B
log (c) = S†(y − p)− λ Rc− µ Ic = 0, (5.19)

with p = (p1, ..., pN )T ∈ RN×1, with pi = σ((Sc)i). To solve (5.19), we use a Newton-

Raphson optimization scheme. This requires computation of the Hessian matrix, given

by

H(E`,Blog ) = −(S†WS + λ R + µ I), (5.20)

with diagonal matrix W = diag
i∈{1,...,N}

{pi(1− pi)}. The Newton-Raphson update rule is

then given by

cnew = cold −H(E`,Dlog )−1(∇cE
`,D
log (c))

= (S†WS + λ R + µ I)−1S†Wz,
(5.21)

with z = Scold + W−1(y − p), see e.g. (Hastie et al., 2009, ch. 4.4). We denote the

optimal coefficients found at convergence of the algorithm by c∗.

Summarizing, we obtain the solution of (5.2) by substituting the optimized B-spline

coefficients c∗ into (5.11), and the resulting template t enters (5.3) for the linear case,

or (5.4) for the logistic case. After this, the most likely object location x∗ is found by

(5.2).
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5.3 Template Matching & Regression on SE(2)

This section starts with details on the representation of image data in the form of

orientation scores (Subsec. 5.3.1). Then, we repeat the sections from Sec. 5.2 in

Subsections 5.3.2 to 5.3.5, but now in the context of the extended domain SE(2).

5.3.1 Orientation Scores on SE(2)

Transformation. An orientation score, constructed from image f : R2 → R, is defined

as a function Uf : R2 o S1 → C and depends on two variables (x, θ), where x =

(x, y) ∈ R2 denotes position and θ ∈ [0, 2π) denotes the orientation variable. An

orientation score Uf of image f is constructed via the orientation score transform

defined in Eq. (2.1) in Subsec. 2.1.4.

In this work we choose to use cake wavelets (defined in Eq. (2.7) in Subsec. 2.1.5)

in the orientation score transform. While in general any kind of anisotropic wavelet

could be used to lift the image to SE(2), cake wavelets ensure that no data-evidence

is lost (!) during the transformation before template matching is performed Duits &

Franken (2010a); Duits et al. (2007b).

Left-Invariant Derivatives We will rely on the left-invariant derivative frame

{A1,A2,A3} defined in Eq. (2.42) in Subsec. 2.3.3. Using this derivative frame we will

construct in Subsec. 5.3.3 a regularization term in which we can control the amount of

(anisotropic) smoothness along line structures.

5.3.2 Object Detection via Cross-Correlation

As in Section 5.2, we search for the most likely object location x∗ via (5.2), with

PSE(2)(x) := max
α∈[0,2π)

P̃SE(2)(x, α). (5.22)

However, now matching is based on L2(SE(2)) inner products, and we define the cor-

responding functionals

P̃
SE(2)
lin (x, α) :=(Lg T,Uf )L2(SE(2)), (5.23)

P̃
SE(2)
log (x, α) :=σ

(
(Lg T,Uf )L2(SE(2))

)
, (5.24)

with g = (x, α), and with shift-twist operator Lg (shift by x, rotation by α) defined by

(LgT )(x̃, θ̃) = T (R−1
α (x̃− x), θ̃ − α). (5.25)
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The L2(SE(2))-inner product is defined by

(T,Uf )L2(SE(2)) :=

∫
R2

∫ 2π

0
T (x̃, θ̃)Uf (x̃, θ̃)dx̃dθ̃, (5.26)

with norm ‖·‖L2(SE(2)) =
√

(·, ·)L2(SE(2)).

5.3.3 Optimizing T Using Linear Regression

Following the same reasoning as in Section 5.2.2 we search for the template that mini-

mizes

Elin(T ) =

N∑
i=1

(
(T,Ufi)L2(SE(2)) − yi

)2
+ λ

∫
R2

∫ 2π

0
‖∇T (x̃, θ̃)‖2Ddx̃dθ̃ + µ‖T‖2L2(SE(2)), (5.27)

with smoothing term:

‖∇(x̃,θ̃)T (g)‖2D = D11 |(A1T )(g)|2 +D22 |(A2T )(g)|2 +D33 |(A3T )(g)|2 . (5.28)

Here, ∇gT (g) = ( (A1T )(g), (A2T )(g), (A3T )(g) )T denotes a left-invariant gradient at

g ∈ SE(2), recall (4.16) where we set C = ξi = 1. Recall also Fig. 5.2 and Eq. (2.15).

The parameters D11, D22 and D33 ≥ 0 are used to balance the regularization in the

three directions. Similar to this problem, first order Tikhonov-regularization on SE(2)

is related, via temporal Laplace transforms, to left–invariant diffusions on the group

SE(2) (Sec. 5.4), in which case D11, D22 and D33 denote the diffusion constants in A1,

A2 and A3 direction. Here we set D11 = 1, D22 = 0, and thereby we get Laplace trans-

forms of hypo-elliptic diffusion processes Citti & Sarti (2006); Duits & Franken (2010a).

Parameter D33 can be used to tune between isotropic (large D33) and anisotropic (low

D33) diffusion (see e.g. (Bekkers et al., 2015a, Fig. 3)). Note that anisotropic diffusion,

via a low D33, is preferred as we want to maintain line structures in orientation scores.

5.3.4 Optimizing T Using Logistic Regression

Similarly to what is done in Subsec. 5.2.3 we can change the quadratic loss of (5.27) to

a logistic loss, yielding the following energy functional

Elog(T ) = Llog(T )− λ
∫
R2

∫ 2π

0
‖∇T (x̃, θ̃)‖2Ddx̃dθ̃ − µ‖T‖2L2(SE(2)), (5.29)
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with log-likelihood (akin to (5.9) for the R2 case)

Llog(T ) =
N∑
i=1

yi(T,Ufi)L2(SE(2)) − log
(

1 + e(T,Ufi )L2(SE(2))

)
. (5.30)

The optimization of (5.27) and (5.29) follows quite closely the procedure as described

in Sec. 5.2 for the 2D case. In fact, when T is expanded in a B-spline basis, the exact

same matrix-vector formulation can be used.

5.3.5 Template Optimization in a B-Spline Basis

5.3.5.1 Templates in a B-Spline Basis

The template T is expanded in a B-spline basis as follows

T (x, y, θ) =

Nk∑
k=1

Nl∑
l=1

Nm∑
m=1

ck,l,m Bn

(
x

sk
− k
)
Bn

(
y

sl
− l
)
Bn

(
θmod 2π

sm
−m

)
, (5.31)

with Nk, Nl and Nm the number of B-splines in respectively the x, y and θ direction,

ck,l,m the corresponding basis coefficients, and with angular resolution parameter sm =

2π/Nm.

5.3.5.2 Linear Regression

The shape of the minimizer of energy functional Elin(T ) in the SE(2) case is the same

as for Elin(t) in the R2 case, and is again of the form given in (5.12). However, now the

definitions of S, R and c are different. Now, S is a [N ×NkNlNm] matrix given by

S = {(si1,1,1, ..., si1,1,Nm , ..., s1,Nl,Nm , ..., s
i
Nk,Nl,Nm

)}Ni=1,

sk,l,m = ( Bn
skslsm

∗ Ufi )(k, l,m),
(5.32)

with Bn
skslsm

(x, y, θ) = Bn
(
x
sk

)
Bn
(
y
sl

)
Bn
(
θ mod 2π

sm

)
. Vector c is a [NkNlNm × 1]

column vector containing the B-spline coefficients and is stored as follows:

c = (c1,1,1, ..., c1,1,Nm , ..., c1,Nl,Nm , ..., cNk,Nl,Nm)T . (5.33)

The explicit expression and the derivation of [NkNlNm × NkNlNm] matrix R, which

encodes the left invariant derivatives, can be found in App. A.1.
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5.3.5.3 Logistic Regression

Also for the logistic regression case we optimize energy functional (5.29) in the same

form as (5.10) in the R2 case, by using the corresponding expressions for S, R, and c

in Eq. (5.18). These expressions can be inserted in the functional (5.18) and again the

same techniques (as presented in Subsection 5.2.4.3) can be used to minimize this cost

on SE(2).

5.4 Probabilistic Interpretation of the Smooth-

ing Prior in SE(2)

In this section we relate the SE(2) smoothing prior to time resolvent hypo-elliptic1

diffusion processes on SE(2). First we aim to familiarize the reader with the concept

of resolvent diffusions on R2 in Subsec. 5.4.1. Then we pose in Subsec. 5.4.2 a new

problem (the single patch problem), which is a special case of our SE(2) linear re-

gression problem, that we use to link the left-invariant regularizer to the resolvents of

hypo-elliptic diffusions on SE(2).

5.4.1 Resolvent Diffusion Processes

A classic approach to noise suppression in images is via diffusion regularizations with

PDE’s of the form Duits & Burgeth (2007){
∂
∂τ u = ∆u,

u|τ=0 = u0,
(5.34)

where ∆ denotes the Laplace operator. Solving (5.34) for any diffusion time τ > 0

gives a smoothed version of the input u0. The time-resolvent process of the PDE is

defined by the Laplace transform with respect to τ ; time τ is integrated out using

a memoryless negative exponential distribution P (T = τ) = αe−ατ . Then, the time

integrated solutions

t(x) = α

∫ ∞
0

u(x, τ)e−ατdτ,

1This diffusion process on SE(2) is called hypo-elliptic as its generator equals (A1)2 +

D33(A3)2 and diffuses only in 2 directions in a 3D space. This boils down to a sub-Riemannian

manifold structure Citti & Sarti (2006); Zhang et al. (2016b). Smoothing in the missing (A2)

direction is achieved via the commutator: [∂θ, cos θ∂x + sin θ∂y] = − sin θ∂x + cos θ∂y.
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with decay parameter α, are in fact the solutions

t = argmin
t∈L2(R2)

[
‖t− t0‖2L2(R2) + λ

∫
R2

‖∇t(x̃)‖2 dx̃

]
, (5.35)

with λ = α−1, and corresponding Euler-Lagrange equation

(I − λ∆)t = t0 ⇔ t = λ−1

(
1

λ
−∆

)−1

t0, (5.36)

to which we refer as the “resolvent” equation Yosida (1995), as it involves operator

(αI − ∆)−1, α = λ−1. In the next subsections, we follow a similar procedure with

SE(2) instead of R2, and show how the smoothing regularizer in Eq. (5.27) and (5.29)

relates to Laplace transforms of hypo-elliptic diffusions on the group SE(2) Duits &

Franken (2010a); Zhang et al. (2016b).

5.4.2 The Fundamental Single Patch Problem

In order to grasp what the (anisotropic regularization term) in Eq. (5.27) and (5.29)

actually means in terms of stochastic interpretation/probabilistic line propagation, let

us consider the following single patch problem and optimize

Esp(T ) = |(Gs ∗R2 T (·, ·, θ0)) (x0)− 1|2

+ λ

∫
R2

∫ 2π

0
‖∇T (x̃, θ̃)‖2Ddx̃dθ̃ + µ‖T‖2L2(SE(2)), (5.37)

with (x0, θ0) = g0 := (x0, y0, θ0) ∈ SE(2) the fixed center of the template, and with

spatial Gaussian kernel

Gs(x) =
1

4πs
e−
‖x‖2
4s .

Regarding this problem, we note the following:

• In the original problem (5.27) we take N = 1, with

Uf1(x, y, θ) = Gs(x− x0, y − y0) δθ0(θ) (5.38)

representing a local spatially smoothed spike in SE(2), and set y1 = 1. The

general single patch case (for arbitrary Uf1) can be deduced by superposition of

such impulse responses.

• We use µ > 0 to suppress the output elsewhere.
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• We use 0 < s� 1. This minimum scale due to sampling removes the singularity

at (0, 0) from the kernel that solves (5.37), as proven in Zhang et al. (2016b).

Theorem 1. The solution to the single patch problem (5.37) coincides up to scalar

multiplication with the time integrated hypo-elliptic Brownian motion kernel on SE(2)

(depicted in Fig. 5.3).

Proof. We optimize Esp(T ) over the set S(SE(2)) of all functions T : SE(2) → R
that are bounded and on SE(2), infinitely differentiable on SE(2) \ {g0}, and rapidly

decreasing in spatial direction, and 2π periodic in θ. We omit topological details on

function spaces and Hörmanders condition Hörmander (1967). Instead, we directly

proceed with applying the Euler-Lagrange technique to the single patch problem:

∀δ∈S(SE(2)) : lim
ε↓0

{
Esp(T + εδ)− Esp(T )

ε

}
= 0⇔

(S∗sSs + λR+ µI)T = S∗sy1 = S∗s1, (5.39)

with linear functional (distribution) Ss given by

(SsT ) = (Gs ∗R2 T (·, θ0))(x0),

and with regularization operator R given by

R = −∆SE(2) := −(D11A2
1 +D22A2

2 +D33A2
3) ≥ 0.

Note that lim
s→0

Ss = δ(x0,θ0) in distributional sense, and that the constraint s > 0 is

crucial for solutions T to be bounded at (x0, θ0). By definition the adjoint operator S∗s
is given by

(S∗sy, T )L2(SE(2)) = (y, SsT ) = y
∫
R2 Gs(x− x0)T (x, θ0) dx

= y
2π∫
0

∫
R2

Gs(x− x0)δθ0(θ)T (x, θ) dxdθ,

= (y Gs(· − x0)δθ0(·), T )L2(SE(2))

and thereby we deduce that

(S∗sy)(x, θ) = y Gs(x− x0)δθ0(θ),

S∗s (SsT ) = T s0 Gs(x− x0)δθ0(θ),

with ∞ > T s0 := (Gs ∗R2 T (·, θ0))(x0) > 1 for 0 < s� 1. The Euler-Lagrange equation

(5.39) becomes

(−λ∆SE(2) + µI)T = (1− T s0 )Gs(x− x0)δθ0(θ).
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Now, when setting Tnew = T
1−T s0

we arrive at the hypo-elliptic resolvent equation on

SE(2):

(−λ∆SE(2) + µI)Tnew = (Gs ∗R2 δx0)δθ0 ⇔

Tnew =
(
−λ∆SE(2) + µI

)−1
es∆R2 δg0

= es∆R2
(
−λ∆SE(2) + µI

)−1
δg0

(5.40)

where we write es∆R2f = Gs ∗R2 f for the diffusion operator, to stress the vanishing

commutators

[es∆R2 ,∆SE(2)] = es∆R2∆SE(2) −∆SE(2)e
s∆R2 = 0,

which directly follows from [∆R2 ,∆SE(2)] = 0. In fact, from these vanishing commu-

tators one can deduce that, thanks to the isotropy of Gaussian kernel, blurring with

inner-scale s > 0 can be done either before applying the resolvent operator or after (as

seen in (5.40)).

The solutions Tnew are precisely the probabilistic kernels Rα,s : SE(2) → R for

time integrated contour enhancements studied in Duits & Franken (2010a); Zhang

et al. (2016b). In fact we see that

Tnew(g) = µ−1Rα,s(g
−1
0 g),

where Rα,s = (I − α−1∆SE(2))
−1es∆R2 δ(0,0) (i.e., the impuls response of the resol-

vent operator) denotes the time-integration of the hypo-elliptic diffusion kernel Kτ,s =

eτ∆SE(2)es∆R2 δ(0,0):

Rα,s(g) = α

∫ ∞
0

Kτ,s(g) e−ατ dτ,

for which 3 different exact analytic formulas are derived in Duits & Franken (2010a).

The kernel Rα,s(x, θ) denotes the probability density of finding a random brush stroke

(regardless its traveling time) at location x with orientation θ given that a ‘drunkman’s

pencil’ starts at g = (0, 0) at time zero. Here the traveling time τ of the random pencil

is assumed to be negatively exponentially distributed with expectation α−1.

5.4.3 Expansion in B-splines

Now we consider the B-spline expansions (Eq. (5.31)) and apply our optimization al-

gorithm to the single patch problem (5.37), with (x0, θ0) = (0, 0). Here we no longer

need a smoothing with a continuous Gaussian Gs, as expansion in the B-spline ba-

sis already includes regularization. Now we set for the smooth spike Uf1(x, y, θ) =

Bn
(
x
sk

)
Bn
(
y
sl

)
Bn
(
θmod 2π
sm

)
, and we thus approximate spikes by the same B-spline
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Figure 5.3: Top row: Comparison of kernel Rα,s(x, y, θ) along respectively the θ and x

axis. Bottom row: Isosurface of the kernel computed by solving the fundamental single

patch problem (5.37), the exact solution, and an illustration of the drunkman’s pencil

in the xy-plane.
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basis in which we expressed our templates. We accept extra regularization (like we

did with the Gaussian in the previous section) and choose to represent a spike by a

normal B-spline. After all, via the central limit theorem B-splines converge to Gaus-

sians when increasing n. We also considered to instead use the fundamental B-Spline

(Unser et al., 1993, Fig. 2), which is sharper but suffers from oscillations, yielding less

favorable results.

In our normal B-spline setting, this choice of smooth spike representation leads to

the following equations

(S†S + λR + µI)c = S†1,

with S the [1×NkNlNm]-matrix with components Bskslsm(k, l,m). Akin to the previous

derivations (5.40) this matrix-equation can be rewritten as

(λR + µI) cnew = S†1.

In particular our B-spline basis algorithm is a new algorithm that can be used for the

resolvent (hypo-)elliptic diffusion process on SE(2). The benefit over Fourier based

algorithms is the local support of the basis functions, which allows for sparse represen-

tations.

In Fig. 5.3 we compare the impulse response for Tikhonov regularization via our

B-spline expansion algorithm with the Brownian motion prior on SE(2) (using a fine

B-spline basis) to the exact solutions derived in Duits & Franken (2010a); Zhang et al.

(2016b). The strong accuracy of our algorithm shows that even in the discrete B-

spline setting the probabilistic interpretation (Thm. 1) of our prior in SE(2)-template

matching holds.

5.4.4 The Drunkman’s Pencil

Similar to the diffusions on R2, given by (5.34), the hypo-elliptic diffusion process on

SE(2) is described by the following PDE:{
∂
∂τW = (D11A2

1 +D33A2
3)W,

W |τ=0 = W0,
(5.41)

initialized with W0 ∈ L2(R2) at time τ = 0. The PDE can be used to obtain the solu-

tions of our single patch problem by initializingW0 with a smooth spike such as we did in

Subsec. 5.4.3, e.g., by settingW0(x, y, θ) = Uf1(x, y, θ) = Bn
(
x
sk

)
Bn
(
y
sl

)
Bn
(
θmod 2π
sm

)
.

113



5. RETINAL LANDMARK DETECTION

Figure 5.4: Stochastic random process for contour enhancement.

The PDE in (5.41) is the forward Kolmogorov equation Hsu (2002) of the following

stochastic process Zhang et al. (2016b):{
x(τ) = x(0) +

√
2D11 εξ

∫ τ
0 (cos θ(τ)ex + sin θ(τ)ey)

1
2
√
τ
dτ

θ(τ) = θ(0) +
√
τ
√

2D33 εθ, εξ, εθ N (0, 1),
(5.42)

where εξ and εθ are sampled from a normal distribution with expectation 0 and unit

standard deviation. The stochastic process in (5.42) can be interpreted as the motion

of a drunkman’s pencil: it randomly moves forward and backwards, and randomly

changes its orientation along the way. The resolvent hypo-elliptic diffusion kernels

Rα,s(g) (solutions to the fundamental single patch problem, up to scalar multiplication)

can then also be obtained via Monte Carlo simulations, where the stochastic process is

sampled many times with a negatively exponentially distributed traveling time (P (T =

τ) = αe−ατ ) in order to be able to estimate the probability density kernel Rα,s(g). This

process is illustrated in Fig. 5.4.

5.5 Applications

Our applications of interest are in retinal image analysis. In this section we establish

and validate an algorithm pipeline for the detection of the optic nerve head (Subsec.

5.5.2), the fovea (Subsec. 5.5.3), and the pupil (Subsec. 5.5.4). Before we proceed to

the application sections, we first describe the experimental set-up (Subsec. 5.5.1). All

experiments discussed in this section are reproducible; the data (with annotations) as

well as the full code (Wolfram Mathematica notebooks) used in the experiments are

made available at: http://erikbekkers.bitbucket.io/TMSE2.html.
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5.5 Applications

5.5.1 The Experimental Set-Up

5.5.1.1 Templates

In our experiments we compare the performance of different template types, which we

label as follows:

A: Templates obtained by taking the average of all positive patches (yi = 1) in the

training set, then normalized to zero mean and unit standard deviation.

B: Templates optimized without any regularization.

C: Templates optimized with an optimal µ, and with λ = 0.

D: Templates optimized with an optimal λ and with µ = 0.

E: Templates optimized with optimal µ and λ.

The trained templates (B-E) are obtained either via linear regression or logistic regres-

sion in the R2 setting (see Subsec. 5.2.4.2 and Subsec. 5.2.4.3), or in the SE(2) setting

(see Subsec. 5.3.5.2 and Subsec. 5.3.5.3). In both the R2 and SE(2) case, linear re-

gression based templates are indicated with subscript lin, and logistic regression based

templates with log. Optimality of parameter values is defined using generalized cross

validation (GCV), which we soon explain in Subsec. 5.5.1.3. We generally found that

(via optimization using GCV) the optimal settings for template E were µ ≈ 0.5µ∗, and

λ ≈ 0.5λ∗, with µ∗ and λ∗ respectively the optimal parameters for template C and D.

5.5.1.2 Matching with Multiple Templates

When performing template matching, we use Eq. (5.3) and Eq. (5.23) for respectively

the R2 and SE(2) case for templates obtained via linear regression and for template

A. For templates obtained via logistic regression we use respectively Eq. (5.4) and

Eq. (5.24). When we combine multiple templates we simply add the objective func-

tionals. E.g, when combining template Clin:R2 and Dlog:SE(2) we solve the problem

x∗ = argmax
x∈R2

PR2

Clin
(x) + P

SE(2)
Dlog

(x),

where PR2

Clin
(x) is the objective functional (see Eq. (5.3)) obtained with template Clin:R2 ,

and P
SE(2)
Dlog

(x) (see Eq. (5.24)) is obtained with template Dlog:SE(2).
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5.5.1.3 Automatic Parameter Selection via Generalized Cross Valida-

tion

An ideal template generalizes well to new data samples, meaning that it has low pre-

diction error on independent data samples. One method to predict how well the system

generalizes to new data is via generalized cross validation (GCV), which is essentially

an approximation of leave-one-out cross validation Craven & Wahba (1978). The vector

containing all predictions is given by ỹ = Scµ,λ, in which we can substitute the solution

for cµ,λ (from Eq. (5.13)) to obtain

ỹ = Aµ,λy, with

Aµ,λ = S(S†S + λR + µI)−1S†,
(5.43)

where Aµ,λ is the so-called smoother matrix. Then the generalized cross validation

value Craven & Wahba (1978) is defined as

GCV (µ, λ) ≡
1
N ‖Ω(I−Aµ,λ)y‖2

(1− trace(Aµ,λ)/N)2 . (5.44)

In the retinal imaging applications we set Ω = I. In the pupil detection application we

set Ω = diag
i∈{1,...,N}

{yi}. As such we do not penalize errors on negative samples, as in this

application the diversity of negative patches is too large for parameter optimization via

GCV. Parameter settings are considered optimal when they minimize the GCV value.

In literature various extensions of GCV are proposed for generalized linear models

Gu (1992); O’sullivan et al. (1986); Xiang & Wahba (1996). For logistic regression we

use the approach by O’Sullivan et al. O’sullivan et al. (1986): we iterate the Newton-

Raphson algorithm until convergence, then, at the final iteration we compute the GCV

value on the quadratic approximation (Eq. (5.21)).

5.5.1.4 Success Rates

Performance of the templates is evaluated using success rates. The success rate of

a template is the percentage of images in which the target object was successfully

localized. In both optic nerve head (Subsec. 5.5.2) and fovea (Subsec. 5.5.3) detec-

tion experiments, a successful detection is defined as such if the detected location x∗

(Eq. (5.2)) lies within one optic disk radius distance to the actual location. For pupil

detection both the left and right eye need to be detected and we therefore use the

following normalized error metric

e =
max(dleft, dright)

w
, (5.45)
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in which w is the (ground truth) distance between the left and right eye, and dleft and

dright are respectively the distances of detection locations to the ground truth positions

of the left and right eye.

5.5.1.5 k-Fold Cross Validation

For correct unbiased evaluation, none of the test images are used for training of the

templates, nor are they used for parameter optimization. We perform k-fold cross

validation: The complete dataset is randomly partitioned into k subsets. Training

(patch extraction, parameter optimization and template construction) is done using

the data from k − 1 subsets. Template matching is then performed on the remaining

subset. This is done for all k configurations with k − 1 training subsets and one test

subset, allowing us to compute the average performance (success rate) and standard

deviation. We set k = 5.

5.5.1.6 Training Samples

In all three applications training samples were used to compute the templates. Positive

training samples were centered around the object of interest. Negative training samples

were centered around random locations in the image, but not within a certain distances

to the true positive object location. In the retinal applications this distance was one

optic disk radius, in the pupil detection application this was a normalized distance of

0.1. An selection of the 2D image pathes that were used in the experiments are shown

in Fig. 5.5.

5.5.2 Optic Nerve Head Detection in Retinal Images

Our first application to retinal images is optic nerve head detection. The ONH is one of

the key anatomical landmarks in the retina, and its location is often used as a reference

point to define regions of interest for the analysis of the retina. The detection hereof is

therefore an essential step in many automated retinal image analysis pipelines.

The ONH has two main characteristics: 1) it often appears as a bright disk-like

structure on color fundus (CF) images (dark on SLO images), and 2) it is the place from

which blood vessels and nerve fibres leave (and enter) the retina. Traditionally, methods

have mainly focused on the first characteristic Aquino et al. (2012); Dashtbozorg et al.

(2015); Lu & Lim (2011). However, in case of bad contrast of the optic disk, or in

the presence of pathology (especially bright lesions, see e.g. Fig. 5.6), these methods

typically fail. Most of the recent ONH detection methods therefore also include the
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Figure 5.5: A selection of positive and negative image patches fi used in the training

of templates.
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5.5 Applications

Figure 5.6: Overview of trained templates for ONH detection, and their responses to a

challenging retinal image. (a) The example input image with true ONH location in blue.

(b) The R2-type templates (top row) and their responses to the input image (bottom

row). (c) The maximum intensity projections (over θ) of the SE(2)-type templates (top

row) and their responses to the input image (bottom row). Detected ONH locations are

indicated with colored circles (green = correct, red = incorrect).
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vessel patterns in the analysis; either via explicit vessel segmentation Marin et al.

(2015); Sekhar et al. (2011), vessel density measures Giachetti et al. (2013); Yu et al.

(2012), or via additional orientation pattern matching steps Youssif et al. (2008). In

our method, both the appearance and vessel characteristics are addressed in an efficient

integrated template matching approach, resulting in state-of-the-art performance both

in terms of success rates and computation time. We target the first characteristic with

template matching on R2. The second is targeted with template matching on SE(2).

5.5.2.1 Processing Pipeline

First, the images are rescaled to a working resolution of 40 µm/pix. In our experiments

the average resolution per dataset was determined using the average optic disk diameter

(which is on average 1.84mm). The images are normalized for contrast and illumination

variations using the method from Foracchia et al. (2005). Finally, in order to put more

emphasis on contextual/shape information, rather than pixel intensities, we apply a

soft binarization to the normalized image f via the mapping erf(8f).

For the orientation score transform we use Nθ = 12 uniformly sampled orientations

from 0 to π and lift the image using cake wavelets Bekkers et al. (2014a); Duits et al.

(2007b). For phase-invariant, nonlinear, left-invariant Duits & Franken (2010a), and

contractive Bruna & Mallat (2013) processing on SE(2), we work with the modulus

of the complex valued orientation scores rather than with the complex-valued scores

themselves (taking the modulus of quadrature filter responses is an effective technique

for line detection, see e.g. Freeman et al. Freeman & Adelson (1991)).

Due to quite large differences in image characteristics, training and matching is

done separately for the SLO and the color fundus images. For SLO images we use the

near infrared channel, for RGB fundus images we use the green channel.

Positive training samples fi are defined as Nx ×Ny patches, with Nx = Ny = 251,

centered around the true ONH location in each image. For every image, a negative

sample is defined as an image patch centered around a random location in the image

that does not lie within one optic disk radius distance to the true ONH location. An

exemplary ONH patch is given in Fig. 5.1. For the B-spline expansion of the templates

we set Nk = Nl = 51 and Nm = 12.

5.5.2.2 Data

In our experiments we made use of both publicly available data, and a private database.

The private database consists of 208 SLO images taken with an EasyScan fundus camera
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5. RETINAL LANDMARK DETECTION

(EasyScan B.V., the Netherlands) and 208 color fundus images taken with a Topcon

NW200 (Topcon Corp., Japan). Both cameras were used to image both eyes of the

same patient, taking an ONH centered image, and a fovea centered image per eye. The

two sets of images are labeled as ”ES” and ”TC” respectively. The following (widely

used) public databases are also used: MESSIDOR (http://messidor.crihan.fr/

index-en.php), DRIVE (http://www.isi.uu.nl/Research/Databases/DRIVE) and

STARE (http://www.ces.clemson.edu/~ahoover/stare), consisting of 1200, 40 and

81 color fundus images respectively. For each image, the circumference of the ONH

was annotated manually, and parameterized by an ellipse. The annotations for the

MESSIDOR dataset were kindly made available by the authors of Aquino et al. (2010)

(http://www.uhu.es/retinopathy). The ONH contour in the remaining images were

manually outlined by ourselves. The annotations are made available on our website

(http://erikbekkers.bitbucket.io/TMSE2.html). The images in the databases con-

tain a mix of good quality healthy images, and challenging diabetic retinopathy cases.

Especially the MESSIDOR and STARE database contain challenging images.

5.5.2.3 Results and Discussion

The Templates The different templates for ONH detection are visualized in Fig. 5.6.

The SE(2) templates are visualized using maximum intensity projections over θ. In

this figure we have also shown template responses to an example image. Visually one

can clearly recognize the typical disk shape in the R2 templates, whereas the SE(2)

templates also seem to capture the typical pattern of outward radiating blood vessels

(compare e.g. AR2 with ASE(2)). Indeed, when applied to a retinal image, where

we took an example with an optic disk-like pathology, we see that the R2 templates

respond well to the disk shape, but also (more strongly) to the pathology. In contrast,

the SE(2) templates respond mainly to vessel pattern and ignore the pathology. We

also see, as expected, a smoothing effect of gradient based regularization (D and E) in

comparison to standard L2-norm regularization (C) and no regularization (B). Finally,

in comparison to linear regression templates, the logistic regression templates have a

more binary response due to the logistic sigmoid mapping.

Detection Results Table 5.1 gives a breakdown of the quantitative results for

the different databases used in the experiments. The templates are grouped in R2

templates, SE(2) templates, and combination of templates. Within these groups, they

are further divided in average, linear regression, and logistic regression templates. The

best overall performance within each group is highlighted in gray.

Overall, we see that the SE(2) templates out-perform their R2 equivalents, and that
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5.5 Applications

Table 5.2: Comparison to state of the art: Optic nerve head detection success rates,

the number of fails (in parentheses), and computation times.

Method MESSIDOR DRIVE STARE Time (s)

Lu Lu (2011) 99.8% (3) 98.8% (1) 5.0

Lu et al. Lu & Lim (2011) 97.5% (1) 96.3% (3) 40.0

Yu et al. Yu et al. (2012) 99.1% (11) 4.7

Aquino et al. Aquino et al. (2012) 99.8% (14) 1.7

Giachetti et al. Giachetti et al. (2013) 99.7% (4) 5.0

Ramakanth et al. Ramakanth & Babu (2014) 99.4% (7) 100% (0) 93.83% (5) 0.2

Marin et al. Marin et al. (2015) 99.8% (3) 5.4†

Dashtbozorg et al. Dashtbozorg et al. (2015) 99.8% (3) 10.6†

Proposed 99.8% (2) 97.8% (1) 98.8% (1) 0.5

†Timings include simultaneous disk segmentation.

combinations of the two types of templates give best results. The two types are nicely

complementary to each other due to the disk-like sensitivity of the R2 templates and the

vessel pattern sensitivity of the SE(2) templates. If one of the two ONH characteristics

is less obvious (as is e.g. for the disk-shape in Fig. 5.6), the other can still be detected.

Also, the failures of R2 templates are mainly due to either distracting pathologies in the

retina, or poor contrast of the optic disk. As reflected by the increased performance of

SE(2) templates over R2 templates, a more stable pattern seems to be the (contextual)

vessel pattern.

From Table 5.1 we also deduce that the individual performances of the linear re-

gression templates outperform the logistic regression templates. Moreover, the average

templates give best individual performance, which indicates that with our effective

template matching framework good performance can already be achieved with basic

templates . However, we also see that low performing individual templates can prove

useful when combining templates. In fact, we see that combinations with all linear

R2 templates are highly ranked, and for the SE(2) templates it is mainly the logistic

regression templates. This can be explained by the binary nature of the logistic tem-

plates: even when the maximum response of the templates is at an incorrect location,

the difference with the correct location is often small. The R2 template then adds to

the sensitivity and precision, as these response are often more fine and detailed. Fi-

nally, we observe that in the combination of templates smooth templates (D and E)

are preferred.
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5. RETINAL LANDMARK DETECTION

Figure 5.7: Detection results of our best method for optic nerve head detection in

retinal images. Successful detections are indicated with a green frame around the image,

failed detections are indicated with a red frame. In the ONH detection application there

were only 3 failures in a set of 1737 images.
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5.5 Applications

In Fig. 5.7 we show the 3 failed cases for ONH detection, and a selection of correct

ONH localizations in difficult images.

State of the Art In Table 5.2 we compare our results on the publicly available

benchmark databases MESSIDOR, DRIVE and STARE, with the most recent meth-

ods for ONH detection (sorted from oldest to newest from top to bottom). In this

comparison, our best performing method (AR2 + Elog:SE(2)) performs better than or

equally well as the best methods from literature. We have also listed the computation

times, and see that our method is also ranked as one of the fastest methods for ONH

detection. The average computation time, using our experimental implementation in

Wolfram Mathematica 10.4, was 0.5 seconds per image on a computer with an Intel Core

i703612QM CPU and 8GB memory. Here we note that in the retinal image datasets

the maximum template response always occurs at rotation α = 0, so for the sake of

reduced computation time we have set PSE(2)(x) := P̃SE(2)(x, 0) instead of (5.22). A

detailed breakdown of timings of the full processing pipeline is given in App. A.3.1.

5.5.3 Fovea Detection in Retinal Images
Our second application to retinal images is for the detection of the fovea (recall Fig. 1.1).

Since the foveal area is responsible for detailed vision, this area is weighted most heavily

in grading schemes that describe the severity of a disease. Therefore, correct localization

of the fovea is essential in automatic grading systems Abramoff & Niemeijer (2015);

Agurto et al. (2011); van Grinsven et al. (2013).

Methods for the detection of the fovea heavily rely on contextual features in the

retina Aquino (2014); Gegundez-Arias et al. (2013); Giachetti et al. (2013); Niemeijer

et al. (2009); Yu et al. (2011), and take into account the prior knowledge that 1) the

fovea is located approximately 2.5 optic disk diameters lateral to the ONH center, that

2) it lies within an avascular zone, and that 3) it is surrounded by the main vessel

arcades. All of these methods restrict their search region for the fovea location to

a region relative to the (automatically detected) ONH location. To the best of our

knowledge, the proposed detection pipeline is the first that is completely independent

of vessel segmentations and ONH detection. This is made possible due to the fact

that anatomical reference patterns, in particular the vessel structures, are generically

incorporated in the learned templates via data representations in orientation scores.

5.5.3.1 Processing Pipeline

The proposed fovea detection pipeline is the same as for ONH detection, however, now

the positive training samples fi are centered around the fovea.
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5. RETINAL LANDMARK DETECTION

Figure 5.8: Overview of trained templates for fovea detection, and their responses to a

challenging retinal image. (a) The example input image with true fovea location in blue.

(b) The R2-type templates (top row) and their responses to the input image (bottom

row). (c) The maximum intensity projections (over θ) of the SE(2)-type templates

(top row) and their responses to the input image (bottom row). Detected fovea locations

are indicated with colored circles (green = correct, red = incorrect).
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5.5 Applications

5.5.3.2 Data

The proposed fovea detection method is validated on our (annotated) databases “ES”

and “TC”, each consisting of 208 SLO and 208 color fundus images respectively (cf.

Subsec.5.5.2.2). We further test our method on the popular publicly available bench-

mark dataset MESSIDOR (1200 images). Success rates were computed based on the

fovea annotations kindly made available by the authors of Gegundez-Arias et al. (2013).

5.5.3.3 Results and Discussion

The Templates Akin to Fig. 5.6, in Fig. 5.8 the trained fovea templates and their

responses to an input image are visualized. The R2 templates seem to be more tuned

towards the dark (isotropic) blob like appearance of the fovea, whereas in the SE(2)

templates one can also recognize the pattern of vessels surrounding the fovea (compare

AR2 with ASE(2)). To illustrate the difference between these type of templates, we

selected an image in which the fovea location is occluded by bright lesions. In this case

the method has to rely on contextual information (e.g. the blood vessels). Indeed, we

see that the R2 templates fail due to the absence of a clear foveal blob shape, and that

the SE(2) templates correctly identify the fovea location. The effect of regularization

is also clearly visible; no regularization (B) results in noisy templates, standard L2

regularization (C) results in more stable templates, and smoothed regularization (D

and E) results in smooth templates. In templates DSE(2) and ESE(2) we see that more

emphasis is put on line structures.

Detection Results. A Table of detection performance for each type of template

is provided in Tab. 5.3. Again there is an improvement using SE(2) templates over R2

templates, although the difference is smaller than in the ONH application. Apparently

both the dark blob-like appearance (R2 templates) and vessel patterns (SE(2) tem-

plates) are equally reliable features of the fovea. A combination of templates leads to

improved results and we conclude that the templates are again complementary to each

other. Furthermore, again linear regression performs better than logistic regression.

In fovea detection we do observe a large improvement of template training over basic

averaging: 1529 (of 1616) successful detections with Clin:SE(2) versus 1488 with ASE(2).

The best performing R2 template was AR2 , the best SE(2) template was Clin:SE(2),

and the best combination was Clin:R2 + Clog:SE(2).

As can also be read from Tab. 5.3, we found that fovea detection in SLO images

was significantly more difficult than fovea detection in CF images. The reason for this

is that on SLO images the clear dark blob-like shape is not always present on these
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5.5 Applications

Figure 5.9: Detection results of our best method for fovea detection in retinal im-

ages. Successful detections are indicated with a green frame around the image, failed

detections are indicated with a red frame. In the fovea detection application there were

only 5 fails in a set of 1408 conventional color fundus (CF) camera images. Out of the

208 scanning laser ophthalmoscopy (SLO) images there were 6 failures, 3 of them are

shown in this figure.
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Table 5.4: Comparison to state of the art: Fovea detection success rates, the number

of fails (in parentheses), and computation times.

Method MESSIDOR Time (s)

Niemeijer et al. Gegundez-Arias et al. (2013); Niemeijer et al. (2009) 97.9% (25) 7.6†

Yu et al. Yu et al. (2011) 95.0%∗ (60) 3.9†

Gegundez-Arias et al. Gegundez-Arias et al. (2013) 96.9% (37) 0.9

Giachetti et al. Giachetti et al. (2013) 99.1% (11) 5.0†

Aquino Aquino (2014) 98.2% (21) 10.9†

Proposed 99.7% (3) 0.5

∗Success-criterion based on half optic radius.
†Timing includes ONH detection.

images. Compare for example the positive fovea patches from Fig. 5.5 (where one

generally sees a dark blob at the center) with the fovea locations in the bottom row of

images in Figs. 5.7 and 5.9.

Additionally, the ES (SLO) and CF databases are also more difficult than the

MESSIDOR database for fovea detection, as these two databases contain a mix of both

fovea centered and ONH centered images. The MESSIDOR database contains only

fovea centered images, in which case the fovea is always located around the center of

the image. Therefore, even though MESSIDOR is one of the most used databases, it

might not be the most representative database for fovea detection benchmarking.

In Fig. 5.9 we show next to a selection of successful detections the only 5 failed cases

on images from conventional color fundus (CF) cameras (TC, MESSIDOR, DRIVE,

STARE), and 3 of the failed detections in images coming from a scanning laser oph-

thalmoscopy (SLO) camera.

State of the Art In Table 5.4 we compared our results on the publicly available

benchmark database MESSIDOR with the most recent methods for fovea detection

(sorted from oldest to newest from top to bottom). In this comparison, our best per-

forming method (Clin:R2 +Clog:SE(2)) quite significantly outperforms the best methods

from literature. Furthermore, our detection pipeline is also the most efficient one; the

computation time for fovea detection is the same as for ONH detection, which is 0.5

seconds.

5.5.4 Pupil Detection

Our third application is that of pupil localization in regular camera images, which is

relevant in many applications as they provide important visual cues for face detection,
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5.5 Applications

face recognition, and understanding of facial expressions. In particular in gaze estima-

tion the accurate localization of the pupil is essential. Eye detection and tracking is

however challenging due to, amongst others: occlusion by the eyelids and variability in

size, shape, reflectivity, or head pose.

Many pupil localization algorithms are designed to work on periocular images, these

are close-up views of the eyes. Such images can be acquired by dedicated eye imaging

devices, or by means of cropping a full facial image (see Fig. 5.11(a)). We will consider

both the problem of detection pupils in periocular images and the more difficult problem

of detection in full images.

We compare our method against the seven most recent pupil detection methods from

literature, for a full overview see Leo et al. (2014) and Markuš et al. (2014). A method

similar to our R2 approach (in the sense that it is also based on 2D linear filtering) is the

method by Kroon et al. Kroon et al. (2008). In their paper templates are obtained via

linear discriminant analysis of pupil images. Asteriadis et al. Asteriadis et al. (2009)

detect the pupil by matching templates using features that are based on distances to

the nearest strong (facial) edges in the image. Campadelli et al. Campadelli et al.

(2009) use a supervised approach with a SVM classifier and Haar wavelet features.

The method by Timm et al. Timm & Barth (2011) is based on searching for gradient

fields with a circular symmetry. Valenti et al. Valenti & Gevers (2012) use a similar

approach but additionally include information of isophote curvature, with supervised

refinement. Markus et al. Markuš et al. (2014) employ a supervised approach using

an ensemble of randomized regression trees. Leo et al. Leo et al. (2014) employ a

completely unsupervised approach similar to those in Timm & Barth (2011); Valenti

& Gevers (2012), but additionally include analysis of self-similarity.

A relevant remark is that all of the above mentioned methods rely on prior face

detection, and restrict their search region to periocular images. Our method works

completely stand alone, and can be used on full images.

5.5.4.1 Processing Pipeline

Interestingly, we could again employ the same processing pipeline (including local nor-

malization via Foracchia et al. (2005)) which was used for ONH and fovea detection.

In our experiments we train templates for the left and right eye separately.
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5. RETINAL LANDMARK DETECTION

Figure 5.10: Detection results of our best method for pupil detection. Successful detec-

tion are indicated with a green frame around the image, failed detections are indicated

with a red frame.

5.5.4.2 Data

We validated our pupil detection approach on the publicly available BioID database

(http://www.bioid.com), which is generally considered as one of the most challenging

and realistic databases for pupil detection in facial images. The database consists of

1521 frontal face grayscale images with significant variation in illumination, scale and

pose.

5.5.4.3 Results and Discussion

The Templates Fig. 5.11(b) and (c) show respectively the trained R2 and SE(2)

templates for pupil detection of the right eye, and their filtering response to the input

image in Fig. 5.11(a). Here the trained R2 templates seemed to capture the pupil as a
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Table 5.5: Average template matching results (± standard deviation) for pupil detec-

tion in 5-fold cross validation, number of failed detections in parentheses. A successful

detection has a normalized error e ≤ 0.1.

Template BioID (Full image) BioID (Periocular image)

ID 1521 1521

R2 templates

AR2 41.03% ± 1.45% (897) 59.70% ± 1.52% (613)

B
lin:R2 0.00% ± 0.00% (1521) 3.62% ± 1.09% (1466)

C
lin:R2 12.95% ± 2.22% (1324) 67.26% ± 2.55% (498)

D
lin:R2 8.28% ± 1.80% (1395) 75.68% ± 2.33% (370)

E
lin:R2 11.51% ± 2.25% (1346) 71.47% ± 2.76% (434)

B
log:R2 0.00% ± 0.00% (1521) 0.00% ± 0.00% (1521)

C
log:R2 12.89% ± 2.06% (1325) 39.91% ± 3.37% (914)

D
log:R2 1.84% ± 0.95% (1493) 22.09% ± 2.37% (1185)

E
log:R2 10.39% ± 2.26% (1363) 37.21% ± 4.37% (955)

SE(2) templates

ASE(2) 57.72% ± 1.68% (643) 75.34% ± 1.31% (375)

Blin:SE(2) 8.74% ± 2.00% (1388) 41.81% ± 5.04% (885)

Clin:SE(2) 84.61% ± 4.19% (234) 86.78% ± 3.68% (201)

Dlin:SE(2) 85.53% ± 3.44% (220) 87.18% ± 3.71% (195)

Elin:SE(2) 85.47% ± 3.82% (221) 87.11% ± 3.87% (196)

Blog:SE(2) 0.00% ± 0.00% (1521) 0.13% ± 0.29% (1519)

Clog:SE(2) 86.52% ± 0.77% (205) 93.95% ± 1.33% (92)

Dlog:SE(2) 75.21% ± 2.18% (377) 89.48% ± 2.27% (160)

Elog:SE(2) 83.30% ± 1.68% (254) 92.77% ± 1.02% (110)

Template combinations (sorted on performance full image)

C
lin:R2 + Elin:SE(2) 93.49% ± 1.49% (99) 95.60% ± 1.46% (67)

C
lin:R2 +Dlin:SE(2) 93.16% ± 1.54% (104) 95.00% ± 1.15% (76)

E
lin:R2 + Elin:SE(2) 93.10% ± 1.04% (105) 95.59% ± 0.89% (67)

E
lin:R2 +Dlin:SE(2) 92.97% ± 1.62% (107) 95.27% ± 1.31% (72)

C
lin:R2 + Clin:SE(2) 92.70% ± 1.41% (111) 95.33% ± 0.97% (71)

E
lin:R2 + Clin:SE(2) 92.64% ± 0.94% (112) 95.33% ± 0.94% (71)

D
lin:R2 +Dlin:SE(2) 92.51% ± 0.96% (114) 95.79% ± 0.82% (64)

D
lin:R2 + Elin:SE(2) 92.24% ± 1.23% (118) 95.86% ± 0.89% (63)

E
log:R2 +Dlin:SE(2) 92.11% ± 2.26% (120) 93.23% ± 1.93% (103)

D
lin:R2 + Clog:SE(2) 92.05% ± 1.52% (121) 95.14% ± 0.78% (74)

Template combinations (sorted on performance periocular image)

D
lin:R2 + Elin:SE(2) 92.24% ± 1.23% (118) 95.86% ± 0.89% (63)

D
lin:R2 +Dlin:SE(2) 92.51% ± 0.96% (114) 95.79% ± 0.82% (64)

D
lin:R2 + Clin:SE(2) 91.52% ± 1.25% (129) 95.73% ± 0.77% (65)

E
lin:R2 + Elin:SE(2) 93.10% ± 1.04% (105) 95.59% ± 0.89% (67)

C
lin:R2 + Elin:SE(2) 93.49% ± 1.49% (99) 95.60% ± 1.46% (67)

E
lin:R2 + Clin:SE(2) 92.64% ± 0.94% (112) 95.33% ± 0.94% (71)

C
lin:R2 + Clin:SE(2) 92.70% ± 1.41% (111) 95.33% ± 0.97% (71)

E
lin:R2 +Dlin:SE(2) 92.97% ± 1.62% (107) 95.27% ± 1.31% (72)

D
lin:R2 + Elog:SE(2) 91.72% ± 1.23% (126) 95.27% ± 0.79% (72)

D
lin:R2 + Clog:SE(2) 92.05% ± 1.52% (121) 95.14% ± 0.78% (74)
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small blob in the center of the template, but apart from that no real structure can be

observed. In the average template we do however clearly see structure in the form of

an “average face”. The SE(2) templates reveal structures that resemble the eyelids in

nearly all templates. The linear regression templates look sharper and seem to contain

more detail than the average template, and the logistic regression templates seem to

take a good compromise between coarse features and details.

Detection Results A Table of detection performance for each type of template

is provided in Tab. 5.5. In terms of success rates we see a similar pattern as with the

ONH and fovea application, however, here we see that the learned templates (C, D and

E) significantly outperform the average templates, and that logistic regression leads to

better templates than using linear regression. Overall, the SE(2) templates outper-

form the R2 templates, linear regression templates outperform the average template,

and (regularized) logistic regression templates outperform linear regression templates.

The best R2 template was Dlin:R2 , the best SE(2) template was Clog:SE(2). The best

combination of templates was Dlin:R2 with Elin:SE(2). Success rates (under condition

e ≤ 0.1, recall (5.45)) using these templates are given in Fig. 5.12(a) and (b). The

processing time for detection both pupils simultaneously was on average 0.7 seconds

per image.

In Fig. 5.10 we show a selection of failed and successful detections. By inspection

of the failed cases we found that a main source of failed detections was due to rotations

of the head. As discussed in the section A.3.1 of the appendix, we did not employ

a rotation invariant detection scheme. Doing so might improve the results. Other

failed detections could be attributed to closed eyes, reflection of glasses, distracting

background objects and different scales (object distance to camera).

State of the Art In Fig. 5.12(a) we compared our approach to the two most recent

pupil detection methods from literature for several normalized error thresholds. Here

we see that with allowed errors of 0.1 (blue circles Fig. 5.11(a)) and higher our method

competes very well with the state of the art, despite the fact that our generic method is

not adapted to the application. Further application specific tuning and preprocessing

could be applied to improve precision (for e � 0.1), but this is beyond the scope of

this chapter. Moreover, we see that our method can be used on full images instead of

the periocular images without much loss in performance. The fact that our method is

still very accurate on full image processing, considering standard accuracy requirements

(e ≤ 0.1, see also Fig. 5.11(a)), shows that it can be used as a preprocessing step for

other applications.

If Fig. 5.12(b) we compared our approach to the seven most recent methods from
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Figure 5.11: Overview of trained templates for right-eye pupil detection, and their

responses to a challenging image from the BioID database. (a) The example input im-

age with true pupil locations (blue circle with a radius that corresponds to a normalized

error threshold of 0.1, see Eq. (5.45). The white square indicates the periocular im-

age region for the right eye. (b) The R2-type templates (top row) and their responses

to the input image (bottom row). (c) The maximum intensity projections (over θ)

of the SE(2)-type templates (top row) and their responses to the input image (bottom

row). Detected pupil locations are indicated with colored circles (green = correct, red =

incorrect, based on a normalized error threshold of 0.1).
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Figure 5.12: (a) Accuracy curves generated by varying thresholds on the normalized

error, in comparison with the two most recent methods from literature. (b) Accuracy

(at a normalized error threshold of 0.1) comparison with pupil detection methods from

literature.
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literature (sorted from old to new). Here we see that the only method outperforming

our method, at standard accuracy requirements (e ≤ 0.1), is the method by Markus et

al. Markuš et al. (2014). Even when considering processing of the full images the only

other method that outperforms ours is the method by Timm et al. Timm & Barth

(2011), whose performance is measured using periocular images.

5.5.5 General Observations

The application of our method to the three problems (ONH, fovea and pupil detection)

showed the following:

1. Cross correlation based template matching via data representations on SE(2)

improves results over standard R2 filtering.

2. Trained templates, obtained using energy functionals of the form (5.1), often

perform better than basic average templates.

3. Our newly introduced logistic regression approach leads to improved results. In

particular in the combination of the templates the soft-binarization due to the

logistic sigmoid leads to more robust filtering. In particular in the pupil detection

application logistic regression produced better results.

4. Regularization in both linear and logistic regression is important. Here both

ridge and smoothing regularization priors have complementary benefits.

5. Our method does not rely on any other detection systems (such as ONH detec-

tion in the fovea application, or face detection in the pupil detection), and still

performs well compared to methods that do.

6. Our method is fast and parallelizable as it is based on inner products, as such it

could be efficiently implemented using convolutions.

5.6 Conclusion

In this chapter we have presented an efficient cross-correlation based template match-

ing scheme for the detection of combined orientation and blob patterns. Furthermore,

we have provided a generalized regression framework for the construction of templates.

The method relies on data representations in orientation scores, which are functions

on the Lie group SE(2), and we have provided the tools for proper smoothing priors
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via resolvent hypo-elliptic diffusion processes on SE(2) (solving time-integrated hypo-

elliptic Brownian motions on SE(2)). The strength of the method was demonstrated

with two applications in retinal image analysis (the detection of the optic nerve head

(ONH), and the detection of the fovea) and additional experiments for pupil detec-

tion in regular camera images. In the retinal applications we achieved state-of-the-art

results with an average detection rate of 99.83% on 1737 images for ONH detection,

and 99.32% on 1616 images for fovea detection. Also on pupil detection we obtained

state-of-the-art performance with a 95.86% success rate on 1521 images. We showed

that the success of the method is due to the inclusion of both intensity and orientation

features in template matching. The method is also computationally efficient as it is

entirely based on a sequence of convolutions (which can be efficiently done using fast

Fourier transforms). These convolutions are parallelizable, which can further speed up

our already fast experimental Mathematica implementations that are publicly available

at http://erikbekkers.bitbucket.io/TMSE2.html. In future work we plan to inves-

tigate further applicability of smoothing on SE(2) in other variational problems such

as (sparse) line enhancement and segmentation problems.
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Chapter 6

Vessel Enhancement

This chapter is based on:

Hannink, J., Duits, R., Bekkers, E.: Crossing-preserving multi-scale vesselness. In Golland,

P., Hata, N., Barillot, C., Hornegger, J., Howe, R., eds.: Medical Image Computing and

Computer-Assisted Intervention (MICCAI ). Volume 8674 of Lecture Notes in Computer

Science. Springer International Publishing (2014) 603-610
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This chapter is based on joint work with Julius Hannink and Remco Duits is pub-

lished in Hannink et al. (2014). Julius Hannink is gratefully acknowledged for his

leading role in the development and implementation of an SE(2) vessel enhancement

method inspired by the Frangi vesselness filter Frangi et al. (1998).

6.1 Introduction

To automatically assess the state of the retinal vascular tree, vessel segmentations

and/or models have to be created and analyzed. Because retinal images usually suf-

fer from low contrast at small scales, the vasculature needs to be enhanced prior to

model creation/segmentation. One well–established approach is the Frangi vesselness

filter Frangi et al. (1998), which is frequently used in robust retinal vessel segmentation

methods Budai et al. (2013); Lupascu et al. (2010). However, the Frangi filter has a

known drawback. It cannot properly enhance vessels throughout crossings or bifurca-

tions that make up large parts of the retinal vascular network. To generically deal with

this issue, we apply the principle of image processing via invertible orientation scores

(Fig. 6.1) and derive a multi–scale crossing–preserving vesselness filter.

In this chapter we will develop vesselness filters on the extended Lie–group domains

of the rotation translation group SE(2) and the rotation, translation and scaling group

SIM(2). In the SIM(2) case we arrive at continuous wavelet transforms on SIM(2)

Jacques & Antoine (2007). In the SE(2) case our approach is closely related (see

(Bekkers et al., 2014a, ch. 2.3)) to the work by Krause at al. Krause et al. (2013) who

rely on a local Radon transform.

The general idea is as follows. Frangi’s vesselness relies on a Hessian in the image

domain and it only copes with one orientation per location. Since complex structures in

retinal images exhibit multiple orientations per position, invertible (multiple scale) ori-

entation scores provide a generic disentanglement of all orientations and scales without

tampering of the data evidence, see Sec. 2.1. We employ differential frames in the score,

providing us specific Hessians, and subsequent vesselness filters that cope generically

with (multiple-scale) crossings/bifurcations without having to classify them.

In the end, we show the performance of this new type of vesselness filters by com-

parison to the multi–scale Frangi vesselness Frangi et al. (1998), both qualitatively

and quantitatively on the High Resolution Fundus (HRF) image dataset available at

http://www5.cs.fau.de/research/data/fundus-images/.
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6.2 Methods

Figure 6.1: Image processing via invertible orientation scores.

6.2 Methods

6.2.1 Orientation Scores

As described in Ch. 2, an orientation score Uf : SE(2)→ C is obtained by correlating

an input image f with a rotating set of anisotropic wavelets ψ. In this chapter we use

for ψ the cake wavelets that are described in Subsec. 2.7 on page 27. The orientation

score transformation is given in Eq. (2.1) on page 25. Stable and exact image recon-

struction (cf. Subsec. 2.1.4) is achieved by Eq. (2.3) In Subsec. 6.2.4 we describe an

extension to multi-scale cake wavelets. These wavelets allows for a scale and orientation

decomposition of the image data, and they also allow for a stable reconstruction from

the scale-orientation score back to the image.

6.2.2 Gaussian Derivatives in Orientation Scores

The orientation score domain is essentially the 2D special Euclidean motion group

SE(2) (cf. Ch. 2). Because of this, all operations Φ on this domain (see Fig. 6.1) have

to be left–invariant to produce a Euclidean invariant net operator Υ on the image Duits

(2005), recall Subsec. 2.3.2. This is desirable since the result should be independent of

rotation and translation of the input. So we must rely on the left–invariant derivatives

{A1,A2,A3}, defined in (2.42), when constructing vesselness filters on SE(2). In the

next Subsec. 6.2.3 we will adapt this frame locally to the score, following the theory of

best exponential curve fits presented in (Franken, 2008, ch.6); Duits & Janssen et al.

(2016). This will compensate for the fact that our wavelet kernel is not always perfectly
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aligned with all local orientations present in the image.

In order to extract local features in SE(2) with well–posed, left–invariant derivative

operators, regularization is needed. The only left–invariant diffusion regularization in

SE(2) that preserves the non–commutative group structure via the commutators is

elliptic diffusion (see also App. 5.4), which is isotropic w.r.t. the (sub-)Riemannian

metric Gξε defined (4.8). Then regularization is achieved via a spatially isotropic Gaus-

sian with scale 1
2σ

2
s and a 1D–Gaussian in θ with scale 1

2(ξσs)
2 (Franken, 2008, ch.5).

Recall from Subsec. 4.3.1 that ξ is a parameter with dimensions 1/length that balances

spatial and angular motion. The regularized derivative operators are convolutions with

differentiated ξ-isotropic Gaussians and generalize the concept of Gaussian derivatives

used in the Frangi vesselness filter Frangi et al. (1998) to SE(2). In our subsequent

extension to SIM(2), where we include scaling a > 0, we will choose ξ = 0.05/a as

we must take into account both physical dimensions, and typical tortuosities of retinal

vessels.

6.2.3 Gauge Derivatives and Exponential Curve Fits in

SE(2)

Another possible coordinate system is the locally adaptive gauge frame {Bi}3i=1, which

we illustrate in Fig. 6.2. There we see that the {Ai}3i=1 frames are aligned with the

discrete orientations of the anisotropic kernel used to construct the orientation score.

Each orientation layer (corresponding to some θ) thus has its own derivative frame.

However, the data in the score is not always perfectly aligned with the kernels used to

do the lifting, especially when a low number of orientations is used. The gauge frame

{Bi}3i=1 is constructed in such a way that it is better aligned with the data in the score,

as can be seen in Fig. 6.2. In order to construct the new gauge frames {Bi}3i=1 we first

fit an exponential curve γc
∗
g (cf. Subsec. 2.2.3) at each g in the orientation score U . The

tangent vector components c∗ of the best exponential curve fit is then used to re-align

the left-invariant frame to the data.

In the exponential curve fitting we minimize the norm of the first-order derivative

of the gradient along the exponential curve:

c∗(g) = argmin

c ∈ R3,

‖c‖ξ = 1

{
Gξ1
(
d

dt
∇U(γcg (t))

∣∣∣∣
t=0

,
d

dt
∇U(γcg (t))

∣∣∣∣
t=0

)}
, (6.1)

with the exponential curves γcg : R → SE(2) defined in Eq. (2.28) on page 44, the
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(ξ-isotropic) Riemannian metric tensor Gξ1 on SE(2) defined in Eq. (4.8) on page 82,

and the left-invariant gradient ∇U given in Eq. (4.16) on page 85. The ξ-norm is given

by ‖c‖ξ =

√
Gξ1(c, c) = ‖Mξc‖, with diagonal matrix Mξ = diag{ξ, ξ, 1}.

As shown in (Duits & Janssen et al., 2016, Thm. 3), the minimizing c∗(g) at each

g in (6.1) can be obtained from the eigenvector Mξc
∗(g) with smallest eigenvalue of

the (dimensionless) rescaled and symmetrized Hessian matrix

Hξ(g) = Mξ−1 (H(g))T Mξ−2 H(g) Mξ−1 , (6.2)

with the left-invariant Hessian matrix H(g) at g, defined using the left-Cartan (dual)

connection ∇∗ (see Eq. (4.26) in Subsec. 4.5.3), given by

H(g) := [(∇∗AidU)(Aj)] = [Aj(AiU)], (6.3)

in which i denotes the row index and j denotes the column index1. I.e., the (dimen-

sionless) eigenvector c̃ with smallest eigenvalue λ is obtained by solving the following

eigensystem

Hξ(g)c̃(g) = λ c̃(g), (6.4)

and is then rescaled to obtain c∗(g) = M−1
ξ c̃(g).

Once the tangent vector c∗(g) =
∑3

i=1 c
i(g) Ai|g is found, the gauge frame is con-

structed in the following way (see also Fig. 6.2):

B := (Rc∗)TM−1
ξ A, (6.5)

with A := (A1,A2,A3)T , B := (B1,B2,B3)T , and with rotation matrix

Rc∗ = R2R1 ∈ SO(3),with

R1 =

 cos ν 0 sin ν

0 1 0

− sin ν 0 cos ν

 , R2 =

 cosχ − sinχ 0

sinχ cosχ 0

0 0 1

 ,
(6.6)

where the rotation angles are the deviation from horizontality angle

χ = arctan

(
c2

c1

)
, (6.7)

1Note the following two: 1) The left-invariant Hessian H(g) is not symmetric due to the

non-commutative derivatives, i.e., A1(A3U) 6= A3(A1U). 2) The switched row and column

indices i and j in Eq. (6.3) might seem odd, but this follows from the Cartan connection on

the co-tangent bundle (Duits & Janssen et al., 2016, App. 4).
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and the spherical angle

ν = arcsin

(
c3

‖c‖ξ

)
. (6.8)

As explained in Subsec. 2.1.6 the exponential curves have constant tangent vector

components in the moving frame of reference {Ai}3i=1 and they are circular spirals (and

their projections to the plane are circles). The spherical angle χ is directly related to

the (signed) norm of the curvature of an exponential curve that is projected to the

plane:

ν = arctan(κ),

in which κ is the signed curvature magnitude given by

κ =
c3 sign(c1)√
(c1)2 + (c2)2

. (6.9)

Although here we do not explicitly use the curvature values κ, it is good to realize

that the gauge frame takes into account both deviation from horizontality and curva-

ture. As such, the vesselness filter defined in the gauge frame better deals with highly

curved blood vessels (the curvature aspect) and still performs well even when a low

number of orientations is used in the orientation score transform (the deviation from

horizontality aspect).

6.2.4 Scale–Orientation Scores

To make the cake kernels described in Subsec. 2.1.5 scale–selective, the pieces of cake

have to be further divided. By cutting out pieces in the log–radial direction, they are

made sensitive to a specific frequency range that can be identified with a scale a in

the spatial domain (see Fig. 6.3). To construct scale–selective cake kernels (anisotropic

wavelets), Sharma & Duits (2015) uses a radial envelope function

BMS(ρ) =

Nρ−1∑
l=0

Bk
l (ρ) :=

Nρ−1∑
l=0

Bk

(
log(ρal)

sρ

)
, with al = a0e

lsρ , (6.10)

where Bk(x) is the k-th order B–spline function (cf. Eq. (2.9) on page 28), ρ is the

radial parameter in polar coordinates (cf. Eq. (2.8)), Nρ is the total number of scales

to sample in the Fourier domain and sρ > 0 denotes the stepsize in log–scale. The mul-

tiplicative character in al = a0e
lsρ reflects the typical scale transitions at bifurcations

in bloodvessels. Because of the B–spline approach, the scale–selective envelopes Bk
l (ρ)

sum to 1 and the Mψ ≈ 1 requirement is met (Fig. 6.3). Scale layers outside a spatially
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Figure 6.2: A: A gauge frame {Bi}3i=1 is constructed by first fitting an exponential

curve γc
∗
g to the data. B: Then the gauge frame is constructed by a normalization and

two subsequent rotations (over angles χ and ν, see Eqs. (6.5–6.8)) of the left-invariant

frame {Ai}3i=1. C: The new gauge frame is now aligned with the best fit exponential

curve.

defined range of interest are merged to reduce the computational load (Fig. 6.3). We

propose the following multi–scale cake kernel

ψMS(x) =
(
F−1

[
ω 7→M−1(ω)F

[
ψ̃MS

]
(ω)
])

(x) (6.11)

where ψ̃MS(x) denotes the wavelet

ψ̃MS(x) =
(
F−1

[
ω 7→ A(ϕ)Bk

0 (ρ)
])

(x) Gsx,sy(x) (6.12)

at the finest scale a0, with ω = (ρ cosϕ, ρ sinϕ). The function A(ϕ) is given by

Bk(s−1
θ [(ϕmod 2π) − π/2]) for ρ > 0 and 1/Nθ for ρ = 0 with the angular stepsize

sθ = 2π/Nθ. The anisotropic Gaussian window Gsx,sy(x) reduces long tails along the

orientation of the wavelet and suppresses oscillations perpendicular to it induced by nar-

row sampling bandwidths in BMS(ρ). Changes in the Fourier domain are resolved via

normalization with M(ω) = N−1
ρ N−1

θ

∑Nρ−1
l=0

∑Nθ
j=1 a

−1
l |F [ψ̃MS ](alR

−1
θj
~ω)|. Thereby,

approximative reconstruction is done by summation over scales and angles. The contin-
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Figure 6.3: Real and imaginary part of the multi–scale cake kernel at a2 (left), Fourier

contours of all wavelets (at 70% of the maximum) and BMS(ρ) (red, dashed) with

components Bk
l (ρ) (blue).

uous wavelet transform (Wψf)(x, θ, a) = (ψaθ ? f)(x) with ψaθ (x) = a−1ψMS(a−1R−1
θ x)

is now set and processing can begin.

6.2.5 Vesselness Filtering on Scale–Orientation Scores

The single–scale Frangi vesselness filter VFr
0 makes use of an anisotropy measure R

and a structure measure S based on second order derivatives in a coordinate system

aligned with the local elongated structures Frangi et al. (1998), recall Sec. 3.2 (page 56).

This approach is now generalized to (scale–)orientation scores for crossing–preserving

vesselness filtering. Given a convexity criterion Q > 0 on transversal vessel profiles and

the measures R resp. S, the setup for the SE(2) vesselness expression VSE(2)
0 (Uaf ) :

SE(2)→ R+ is identical to the one proposed by Frangi et al. (1998):

VSE(2)
0 (Uaf ) =

{
0 if Q ≤ 0

exp
(
− R2

2σ2
1

) [
1− exp

(
− S

2σ2

)]
if Q > 0

(6.13)

where Uaf (x, θ) = (Wψf)(x, θ, a), a > 0 fixed, is a single scale layer of the multi–

scale wavelet transform. We always set σ1 = 0.5, and following the recommendations

given in Frangi et al. (1998) we let σ2 depend on the maximum structureness value:

σ2 = 0.2 ||S||∞.

There are two natural generalizations of VFr
0 to SE(2) that differ in the choice of

coordinate system used to define R,S and Q. One option is to work in the moving
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frame of reference {A1,A2,A3}, recall Eq. (2.42) on page 48, in which case we set

R =
(A2

1 Uaf )s,ξ

(A2
2 Uaf )s,ξ+(A2

3 Uaf )s,ξ
,

S =
[
(A2

1 Uaf )s,ξ
]2

+
[
(A2

2 Uaf )s,ξ + (A2
3 Uaf )s,ξ

]2
,

Q = (A2
2 Uaf )s,ξ + (A2

3 Uaf )s,ξ.

(6.14)

where the superscripts s,ξ indicate Gaussian derivatives at spatial scale s = 1
2σ

2
s and

angular scale 1
2(ξσs)

2. The generalization of the filter in the {A1,A2,A3} frame is

referred to as VAi0 at single scales and as VAi in the multiple scale recombination,

similar to the notation in Frangi et al. (1998). The other possible coordinate system

is the Gauge frame {B1,B2,B3} determined by the eigendirections of the left-invariant

Hessian. As the filter is no longer confined to fixed θ-slices, and the Gauge frame is

fully aligned with the 3D-line structures in the score, the analogies to Frangi et al.

(1998) are even stronger in this frame. Note that the vesselness filter with respect to

the gauge frame arises by replacing Ai → Bi in (6.14) which yields

R =
(B21 Uaf )s,ξ

(B22 Uaf )s,ξ+(B23 Uaf )s,ξ
,

S =
[
(B2

1 Uaf )s,ξ
]2

+
[
(B2

2 Uaf )s,ξ + (B2
3 Uaf )s,ξ

]2
,

Q = (B2
2 Uaf )s,ξ + (B2

3 Uaf )s,ξ

(6.15)

The SE(2)-generalization of the vesselness filter in this frame is referred to as VBi0 ,

whereas the multi-scale SIM(2)-generalization is written as VBi . In the SIM(2)-

generalizations of the vesselness filters (regardless the choice of reference frame) the

final image reconstruction from vesselness filtered scale–orientation scores are obtained

via (
VSIM(2)(f)

)
(x) = µ−1

∞

Ns∑
l=1

µ−1
l,∞

Nθ∑
j=1

(
VSE(2)

0 (Ualf )
)
(x, θj) (6.16)

where µ∞ and µl,∞ are the maximum values, i.e. ||·||∞ norms, taken over the subsequent

sums. For comparison, the multi–scale Frangi vesselness filter is also computed via

summation over single scale results and max-normalized.

Fig. 6.4 shows multi–scale vesselness filtering results for a retinal image f obtained

with the Frangi filter and our two methods for five scales {1.5, 2.4, 3.8, 6.0, 9.5} px,
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Figure 6.4: Retinal image f and multi–scale vesselness filtering results for the Frangi

filter VFr(f) and our two methods VAi(f) resp. VBi(f) (left to right).

Figure 6.5: Mean accuracy and sensitivity on the HRF dataset over threshold values

t. Shading shows ±1σ (left). Retinal image and patch ground truth/segmentation at

t = 0.05 (center). Full ground truth and segmentation (right).

ξ = 0.05/a and 12 orientations. Both our methods clearly outperform the Frangi filter

at crossings and bifurcations. The Gauge–frame method VBi gives best results as it

aligns with 3D-elongated structures in the score.

6.3 Experiments

To show the benefit of crossing–preservation in multiple scale vesselness filtering, we

devised a simple segmentation algorithm to turn a vesselness filtered image V(f) into

a binary vessel map. First, a local thresholding is applied so that we obtain the binary

image fB = Θ
(
[V(f) − Gγ ∗ V(f)] − t

)
where Θ is the Heaviside step function and

Gγ is a Gaussian with standard deviation γ � 1. In a second step, the connected
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Figure 6.6: Shaded regions specify areas containing junction points. Junction points

are found by thinning and pruning the binary ground truth.

Table 6.1: Results for bifurcation and crossing areas (junctions) compared to the

complement of this set (non-junctions). See Fig.6.6 for sample areas.

Junctions Non-junctions

Method Sens. Acc. Sens. Acc.

Our method

All 0.84 0.92 0.76 0.97

Healthy 0.82 0.94 0.75 0.97

Glaucoma 0.84 0.93 0.74 0.97

Diabetic 0.85 0.90 0.78 0.96

Frangi et al. (1998)

All 0.71 0.92 0.67 0.97

Healthy 0.71 0.93 0.67 0.97

Glaucoma 0.75 0.93 0.68 0.97

Diabetic 0.69 0.91 0.65 0.97

149



6. VESSEL ENHANCEMENT

morphological components in fB counting less than τ pixels or showing elongations

below a threshold ν are removed. The parameters γ, τ and ν are fixed at 100 px, 500

px and 0.85 respectively. V(f) is either obtained with VFr or via the SIM(2) method

VBi using the settings mentioned earlier.

This segmentation algorithm is evaluated on the HRF dataset consisting of fun-

dus images for a healthy, diabetic retinopathy and glaucoma group (15 images each,

ground truths provided). Average sensitivity and accuracy on the whole dataset are

shown in Fig. 6.5 over threshold values t. Our methods via invertible scale–orientation

scores, and in particular the VBi method, perform considerably better than the method

based on the multi–scale Frangi filter. The segmentation results obtained with VBi

are more stable w.r.t. variations in the threshold t and the performance on the small

vasculature has improved as measured via the sensitivity. Average sensitivity, speci-

ficity and accuracy at a threshold t = 0.05 resp. given by 0.786, 0.988, 0.969 (healthy),

0.811, 0.963, 0.953 (diabetic retinopathy) and 0.797, 0.976, 0.964 (glaucoma) compare

well with other algorithms evaluated on the HRF dataset (see (Budai et al., 2013, Tab.

5)). On the diabetic retinopathy group, our method even outperforms existing seg-

mentation methods. Fig. 6.5 shows a full segmentation computed with the proposed

method and an in–detail patch. In Table 6.1 and Fig. 6.6 we see that our method

improves sensitivity both at non-crossing line structures (due to line propagation of

anisotropic wavelets) and at crossing/bifurcating structures. As expected, we observe

a larger improvement at crossings.

We also compared the results of SIM(2) vesselness filtering based on the left-

invariant frames {Ai}3i=1 with the results based on the gauge frame {Bi}3i=1. Here we

see that the gauge frame produces a visually much more appealing soft-segmentation

of the blood vessels than SIM(2)-vesselness filtering via the non-adaptive frame, see

for example Fig. 6.7. It therefore also produces a more accurate segmentation as can

be deducted from the comparison presented in Fig. 3.3 on page 58. Generally, we con-

clude from the experiments that the gauge frame approach better reduces background

noise, showing much less false positives in the final segmentation results, especially at

crossings.

6.4 A Fast Alternative SE(2) Gauge Frame Method

A fast and simplified alternative to the orientation score based vesselness filters de-

veloped in this chapter is presented in Zhang et al. (2016a). There, an approach is

developed that merely relies on the second order spatial derivative of perpendicular
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Figure 6.7: Center original image from HRF dataset (healthy subject nr. 5). Rows

show the soft-segmentation (left) and the corresponding performance maps (right), based

on the hard segmentation. In green true positives, in blue true negatives, in red false

positives, compared to manual segmentation by an expert. First row SIM(2)-vesselness

based on non-adaptive frame {Ai}3i=1. Second row SIM(2)-vesselness based on the

gauge frame {Bi}3i=1. Figure from Duits & Janssen et al. (2016).

vessel cross-sections, which are directly computed via Gaussian derivatives with the

gauge frame Bi. This results in an effective vessel enhancement via

VZhang(Uf )(x, θ) =
(
B2

2(Gσs,σo ∗ Uf )
)

(x, θ). (6.17)

Here, one takes the advantage that in the generic gauge frame spatial generators stay

spatial.

6.5 Conclusion

We developed (multi–scale) crossing–preserving vesselness filters as generalizations of

Frangi et al. (1998) to the Lie–group domains SE(2) resp. SIM(2). The new filters
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were evaluated qualitatively and quantitatively on a public dataset and outperformed

the Frangi filter and existing segmentation methods. This shows the method’s potential

for application in other areas of vascular imaging.
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Chapter 7

Vessel Tracking Part I: Iterative

Tracking via Local Optimization

This chapter is based on:

Bekkers, E., Duits, R., Berendschot, T., ter Haar Romeny, B.: A multi-orientation analysis

approach to retinal vessel tracking. Journal of Mathematical Imaging and Vision (JMIV )

49(3) (2014) 583-610
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7.1 Introduction

As motivated in Chapter 1, a large variety of diseases affect the vascular system in

a way that may cause geometrical and functional changes (Sec. 1.3). Such changes

can be observed and quantified in retinal images. The quantification of geometrical

properties of the retinal vasculature requires tools such as retinal vessel tracking and

segmentation. In this chapter we propose a fully automated tracking method for the

construction of complete models of the retinal vasculature.

Retinal Vessel Tracking Typically there are two types of methods for vessel ex-

traction: pixel classification methods Budai et al. (2009); Krause et al. (2013); Odstr-

cilik et al. (2009); Philipsen (2012) and vessel tracking methods Al-Diri et al. (2009);

Can et al. (1999); Chutatape et al. (1998); Espona et al. (2007); Grisan et al. (2004);

Poletti et al. (2011); Yin et al. (2012). The first type of method classifies pixels as either

being part of a vessel or background, resulting in a pixel map in which white pixels

represent blood vessels. Of the pixel classification methods, the approach by Krause

et al. Krause et al. (2013) is most similar to our method presented in this chapter, as

both methods rely on a transformation to a higher dimensional domain. In their work

they applied vessel detection based on the local Radon transform, of which we will show

later in this chapter that this is a special case of an orientation score transform based

on cake wavelets.

The other type of method, vessel tracking, is based on recursively expanding a

model of the vasculature from a set of seed points. One advantage of vessel tracking

over pixel classification is that it guarantees connectedness of vessel segments, whereas

in pixel classification methods this is not necessarily the case. For further quantitative

analysis of the vasculature, tracking algorithms are preferred because they intrinsically

provide geometrical and topological information. For example, vessel widths, curva-

tures, segment lengths, bifurcation density and other features can relatively easily be

extracted from the generated vessel models.

Several different approaches to vessel tracking can be found in literature. There are

methods based on active contours Al-Diri et al. (2009); Espona et al. (2007), matched

filters Can et al. (1999); Chutatape et al. (1998); Grisan et al. (2004), and probabilistic

models Yin et al. (2012) among others Poletti et al. (2011); Yin et al. (2012). The

majority of papers on vessel tracking report limitations regarding tracking blood vessels

through crossings, bifurcations and/or more complex situations. In this chapter we aim

at effectively solving these problems by means of orientation analysis via orientation

scores. We propose two new tracking algorithms that act directly on the domain of an
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orientation score, and we show that these methods are highly capable of dealing with

the aforementioned problems. Afterwards, we will extend one of the orientation score

based algorithms to a vasculature tracking algorithm, which is capable of constructing

models of the complete retinal vasculature.

Chapter Outline The chapter is structured as follows: First, in Section 7.2, we

summarize the tools from orientation score theory that are required in this application.

In Section 7.3, two vessel tracking approaches based on orientation scores are then

described:

• the ETOS-algorithm: an all-scale approach based on a new class of wavelets, the

so-called cake wavelets

• the CTOS-algorithm: a multi-scale approach based on the classical Gabor wavelets

Both tracking methods rely on a novel generic geometrical principle for curve optimiza-

tion within SE(2), which is explained and mathematically underpinned in Appendix

B.1. We will show that ETOS generally works with different types of orientation scores,

however with best performance on invertible orientation scores based on cake wavelets

(in comparison to non-invertible orientation scores based on Gabor wavelets). The

second approach requires a multi-scale and multi-orientation decomposition. The two

approaches are described in Section 7.3.1, and evaluated in Section 7.3.2. It will turn

out that ETOS based on cake wavelets has several advantages over CTOS based on

Gabor wavelets. We have validated ETOS more extensively by comparing it to the

state of the art in retinal vessel tracking Al-Diri et al. (2009); Bankhead et al. (2012);

Xu et al. (2011) using the publicly available REVIEW database Al-Diri et al. (2009).

In Section 7.4.1 we describe our vasculature tracking algorithm, composed of proper

initialization, junction detection and junction resolver algorithms. In Section 7.4.2

the correctness of the topology of the models is evaluated using images of the HRFI-

database Budai (2011). General conclusions can be found in Section 7.5.

7.2 Tools From Orientation Score Theory

The vessel tracking method described in this chapter relies on the construction and

analysis of orientation scores, for which the theory is provided in Sec. 2.1. More specif-

ically, we construct orientation scores Uf via Eq. (2.1) (page 25) using the (cake and

Gabor) wavelets ψ defined in Subsec. 2.1.5. Whenever it is relevant to make this des-

tinction, an orientation score constructed using cake wavelets will be denoted by U cakef
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and using Gabor wavelets at scale a with UGaborf,a . Typical responses of the wavelets

are shown in Fig. 7.1. Additionally, we propose in this chapter a decomposition of the

wavelets in a forward- and backward-oriented part, which makes the wavelets better

suited for tracking in orientation scores. This will be the topic of Subsec. 7.2.1.

We shall also rely on the left-invariant vector fields defined in (2.42). Recall from

Remark 5 (page 43) that tangent vectors can be algebraically considered as local

differential operators or geometrically as tangent vectors (to equivalence classes) of

curves. In this chapter we need both viewpoints. For the algebraic viewpoint we write

{A1|(x,y,θ) , A2|(x,y,θ) , A3|(x,y,θ)} for the left-invariant basis at (x, y, θ) ∈ SE(2). For

the geometric viewpoint we use the notation1.

eξ(x, y, θ) = cos θ ex(x, y, θ) + sin θ ey(x, y, θ),

eη(x, y, θ) = − sin θ ex(x, y, θ) + cos θ ey(x, y, θ),

eθ(x, y, θ) = (0, 0, 1),

(7.1)

with ex(x, y, θ) = (1, 0, 0) and ey(x, y, θ) = (0, 1, 0). The moving frame of reference

is defined for each coordinate (x, y, θ). For notational convenience, however, we omit

the coordinate dependency of the moving frame of reference in the remainder of this

chapter, and simply write {eξ, eη, eθ}.

(a) Image selection (b) Zoomed image f(·) (c) Ucakef (·, θv) (d) UGaborf,a1
(·, θv) (e) UGaborf,a3

(·, θv)

Figure 7.1: Parallel blood vessels and orientation scores. (a) A selection of a fundus

image and (b) a close-up view. (c-d) Slices of orientation scores constructed from (b)

using cake wavelets and Gabor wavelets at scale a1 = 3 ∗ 10/(2π) and a3 = 3 ∗ 30/(2π)

respectively. The slices correspond to the orientation θv of two parallel blood vessels.

1We stress that this gives a non-holonomic coordinate basis for the coordinates (ξ, η, θ). As

such, eξ for example does not relate to a local coordinate derivative ∂
∂ξ , i.e., eξ 6= ∂

∂ξ . This

observation is in line with Remark 8.
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(a) Double-sided (b) Single-sided

Figure 7.2: Comparison between double- and single-sided cake wavelets by visuali-

sation of the orientation column Uf (x, ·) at several points in a fundus image. The

orientation column at a certain point x is visualized by drawing 36 lines, at evenly

distributed angles 0 ≤ θ < 2π, and of which the length in direction θ is given by the

absolute value of the score |Uf (x, θ)|.

7.2.1 Double-Sided vs Single-Sided Wavelets, Orientation

vs Direction

The cake and Gabor wavelets are double-sided wavelets which do not distinguish be-

tween a forward or backward direction (they are symmetric with respect to the y-axis).

In order to distinguish between π symmetries and 2π symmetries (see Fig. 7.2), and to

be able to handle bifurcations, we decompose the orientation scores into a forward and

backward direction1, denoted by a + and − symbol respectively:

Uf (x, y, θ) = U+
f (x, y, θ) + U−f (x, y, θ), (7.2)

where

U+
f (x, θ) =

∫
R2 ψ+(R−1

θ (y − x))f(y)dy,

U−f (x, θ) =
∫
R2 ψ−(R−1

θ (y − x))f(y)dy,
(7.3)

1I.e. we extend the domain SE(2) = R2 o SO(2) of our orientation scores to the group

E(2) = R2 o O(2), where O(2) = {M ∈ R2×2|MT = M−1} also includes, besides rotations

(with detM = +1), reflections (with detM = −1).
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and where

ψ+(x, y) = w(x)ψ(x, y),

ψ−(x, y) = w(−x)ψ(x, y) = (1− w(x))ψ(x, y)
(7.4)

with

w(x) =
1

2
+

1

2
erf(x) =

1

2
+

1

2π

∫ x

0
e−y

2
dy. (7.5)

Note that by using the error function, we have ψ = ψ− + ψ+ and U−f (x, y, θ) =

U+
f (x, y, θ + π), so that Uf (x, y, θ) = U+

f (x, y, θ) + U+
f (x, y, θ + π). It is thus possible

to choose one of the single-sided wavelets to construct a directional orientation score,

while still being able to access the original (double-sided) orientation score. Fig. 7.2

demonstrates the advantage of using single-sided wavelets over double-sided wavelets in

the case of direction estimation based on the orientation column of a score Uf (x, y, ·).

(a) Vessels in OS and V-plane (b) Real (c) Imag. (d) Detection profiles

Figure 7.3: Edge tracking in a π-periodic orientation score constructed from double-

sided wavelets. (a) Graphical representation of blood vessels in the orientation score.

The real and imaginary part of the orientation score on the yellow plane V (perpendic-

ular to the blood vessel) are represented in (b) and (c) respectively. In (c) the left and

right edge of the blood vessel are expressed as black and white blobs respectively. The

edge and orientation detection profiles are demonstrated in (d).
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7.3 Vessel Tracking in Orientation Scores via

Optimization in Transversal Tangent Planes

V
In orientation scores, information from the original image is both maintained and neatly

organized in different orientations, leading to the disentanglement of crossing structures.

Moreover, because of the quadrature property of the wavelets used in the construction

of orientation scores, important edge information is well represented in the imaginary

part of the score. We therefore propose tracking algorithms that directly act on the

orientation score:

1. The ETOS algorithm: Edge Tracking based on Orientation Scores (Section 7.3.1.1).

2. The CTOS algorithm: Centerline Tracking based on multi-scale Orientation

Scores (Section 7.3.1.2).

In both tracking algorithms we rely on a fundamental geometric principle to extract

the most probable paths in orientation scores. Consider to this end Fig. 7.3a, where a

track t 7→ g(t) = (x(t), θ(t)) is considered locally optimal if it is locally optimized in

each1 transversal 2D-tangent plane

V|g = span{A2|g , A3|g} ⊂ Tg(SE(2)), (7.6)

spanned by A2, and A3 defined in Eq. (2.42), within the full tangent space Tg(SE(2))

defined in Eq. (2.19). For more details on this optimization principle we refer to Ap-

pendix B.1.

7.3.1 Methods

7.3.1.1 ETOS: Edge Tracking in Orientation Scores

The ETOS algorithm tracks both vessel edges simultaneously through an orientation

score. The method iteratively expands a blood vessel model by detecting, at each for-

ward step k, the optimal edge locations (uk, θk), (vk, θk) ∈ SE(2) from the orientation

score. Here uk and vk denote the 2D left and right edge position respectively, θk de-

notes the orientation of the blood vessel. At each iteration the vessel center point ck

1That is locally optimal in V|g for each g = g(t), t ∈ Dom(g).
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and the vessel width wk are defined as follows:

ck =
uk + vk

2
, (7.7)

wk = ‖uk − vk‖. (7.8)

To describe our method we will rely on a moving frame of reference with basis vectors

eηk , eξk and eθk , which are described by the orientation parameter θk and Eq. (7.1).

In our method the edge positions guk and gvk are detected in the orientation score

from the tangent plane V (yellow plane in Fig. 7.3a). An edge can be detected as a

local optimum from the imaginary part of this plane; a local minimum and maximum

for the left and right edge respectively (as indicated by the two red dots in Fig. 7.3c). A

schematic overview of the tracking process, including the symbols used in this section,

is presented in Fig. 7.4.

For the sake of speed and simplicity, we follow a 2-step approach where the process

of detecting the optimal edge positions is separated into two 1D optimization tasks

which simply involve the detection of local minima (left edges) and maxima (right

edge); in step 1 the edge locations uk and vk are optimized in the eη direction (η-

optimization), in step 2 the corresponding orientation is optimized in the eθ direction

(θ-optimization), see Fig. 7.3b-d. By considering the continuous properties of the blood

vessels (e.g. continuous vessel widths), we use a paired edge tracking approach where

the left and right edges are detected simultaneously. This approach has the advantage

that even if one of the edges is less apparent in the image (e.g. at crossing points,

parallel vessels and bifurcations), both edges and their orientation can still be tracked.

A possible disadvantage of this approach is however that abrupt changes in vessel width

(e.g. at stenoses and aneurysms) may become unnoticed or detected with less detail.

Step 1: Based on a-priori knowledge about the previous vessel orientation, edges

and center point, stored in

{(θl,ul,vl, cl)|k −M ≤ l ≤ k − 1},

where we set M = 10, a new vessel center point c̃k is calculated as

c̃k = ck−1 + λ eξk−1
, (7.9)

where λ (typically in the order of 2 pixels) is the tracking step-size. New edge points

are selected from a set of points pk(η) on a line Lk going through the estimated center

point c̃k and perpendicular to the vessel orientation θk−1:

Lk = {pk(η) | η ∈ [−ηmax, ηmax]}, (7.10)
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Figure 7.4: Schematic overview image of ETOS. Using the detected vessel center point

ck−1 and the orientation θk−1 detected at the vessel edges uk−1 and vk−1 at iteration

k − 1, a rough estimation of the next center point c̃k found by stepping forward in the

vessel direction eξ,k−1 with step size λ. Through the estimated center point a line Lk is

defined on which the new vessel edges uk and vk are detected. At these edges the vessel

orientation θk is detected and the final precise vessel center point ck is calculated as the

mean of the two edges.

with

pk(η) = c̃k + η eηk−1
, (7.11)

where η is a parameter describing the distance to the estimated vessel center point and

ηmax > ‖uk − vk‖ denotes the maximum distance to the estimated the vessel center

point. Note that orientation θk−1 of the previous iteration is used as the new orientation

is yet to be detected.

An intensity profile Iηk (η) can then be obtained from the orientation scores according

to

Iηk (η) = Uf (pk(η), θk−1), (7.12)

see Fig. 7.3d. New edge points can now easily be found by detecting the local optima

on the imaginary part of this profile. However, the detection of vessel edges is made
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(a) (b)

(c) (d)

Figure 7.5: Edge detection using the edge probability envelope. (a) Cross-sectional

intensity profile taken from Fig. 7.1c, showing many potential candidate left (L) and

right (R) edge positions. (b) The edge probability profile. (c) Centering of the edge

probability profile on the vessel of interest by means of correlation. (d) Enveloping the

intensity profile results in clearly detectable left and right edge points.

more robust by taking into account that the vessel wall is a continuous structure, and

that the width of a blood vessel gradually changes, rather than abruptly. Therefore, we

introduce the (adaptive) edge probability envelope. The edge probability envelope is

used to indicate the most likely position of the vessel edges and it consists of two Gaus-

sian distributions, one around the expected left vessel edge position and one around

the right vessel edge position. The envelope function is given by:

Ewk,σ,η0(η) = −Gσ(η +
wk

2
− η0) +Gσ(η −

wk

2
− η0),

Gσ(x) =
1

σ
√

2π
e
−
x2

2σ2 ,

(7.13)

where η0 is the estimated location of the vessel center on Lk, wk is the mean vessel
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width calculated over the last M iterations:

wk =
1

M

M∑
m=1

wk−m =
1

M

M∑
m=1

‖uk−m − vk−m‖, (7.14)

the standard deviation of the Gaussian distributions is denoted with σ, and η0 is used

to align the envelope with the actual vessel profile. A robust value for η0 is found by

optimizing the cross-correlation of the envelope with the imaginary part of the actual

profile:

η0 = argmax
η∗∈[−0.5wk,0.5wk]

∫ −ηmax
−ηmax

Im(Iηk (η))Ewk,σ,η∗(η)dη, (7.15)

see Fig. 7.5c. The left and right edges are finally detected as the arguments corre-

(a) Image, f(·) (b) Intensity profile,

f(pk(η))

(c) OS,

Uη,Gaborf,a (·, θv)
(d) Intensity profile,

Iη,Gabork (η)

Figure 7.6: Scale selective orientation scores can filter out a vessels’ central light

reflex. (a) A small sub-image showing a vessel with central light reflex and (b) the

corresponding intensity profile. (c) A slice, corresponding to the vessel orientation θv,

of the orientation score constructed from (a) and (d) the corresponding intensity profile

taken hereof. Note that from (d) the vessels center point can be roughly detected as a

local minimum.

sponding to the minimum and maximum points, ηkleft and ηkright respectively, of the

product of the envelope and the intensity profile:

ηkleft = argmin
η∈[−ηmax,η0]

{
Im Iηk (η) |Ewk,σ,η0(η)|

}
,

ηkright = argmax
η∈[η0,ηmax]

{
Im Iηk (η) |Ewk,σ,η0(η)|

}
,

(7.16)

see Fig. 7.5d for an example. The new edge points can then be assigned by

uk = pk(η
k
left),

vk = pk(η
k
right).

(7.17)
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Step 2: Orientation θk can be estimated by selecting the orientation that provides

the highest orientation score response at both vessel edges. The orientation score re-

sponse is a combination of the orientation columns at the left and right edges (Uf (uk, ·)
and Uf (vk, ·) resp.), and the optimal orientation is calculated as:

θk = argmax
θ∈[0,2π]

Im( −Uf (uk, θ) + Uf (vk, θ) ). (7.18)

Finally the new center point ck, which may not be equal to c̃k, is calculated as the

point between the two edges, according to Eq. (7.7).

7.3.1.2 CTOS: Multi-Scale Vessel Center-Line Tracking in Orienta-

tion Scores

In this section the scale-selective property of the Gabor wavelets is exploited in the

design of a fast orientation score based method called CTOS. The potential presence of

a central light reflex in a blood vessel makes the design of a simple and fast centerline

tracking algorithm based on local minima tracking in the image nearly impossible.

However, by using Gabor wavelets and appropriate scale selection, central light reflexes

can be filtered out such that vessel center points can easily be detected as local minima

on detection profiles (see Fig. 7.6).

The CTOS algorithm follows the same geometric principle as the ETOS algorithm,

for a mathematical underpinning see Appendix B.1, however CTOS is done on the real

part of orientation scores in order to find the vessel center line, rather than the vessel

edges. In this algorithm each iteration k consists of 3-steps: In step 1 the center point

ck is detected (η-optimization), in step 2 the orientation θk is detected (θ-optimization)

and in step 3 the vessel scale ak is detected (a-optimization).

Step 1: Using the vessel center point ck−1, orientation θk−1 and scale ak−1, which

were detected during iteration k− 1, phase 1 at iteration k is started by estimating the

new center point c̃k as given by Eq. (7.9). The new center point ck is selected from a

set of candidate points pk(η) as given by Eq. (7.11). From the candidate points pk(η)

a center point detection profile Iη,Gabork (η) is obtained by:

Iη,Gabork (η) = UGaborf,ak−1
(pk(η), θk−1) (7.19)

with UGaborf,ak−1
the orientation score generated by the Gabor wavelets at scale ak−1. The

new center point is detected as the coordinate belonging to the local minimum on the
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intensity profile nearest to c̃k:

ck = pk(η0),

η0 = argmin
η∈[−ηmax,+ηmax]

{
Re Iη,Gabork (η)

}
. (7.20)

Step 2: The new vessel orientation is detected as the local maximum of the negative

orientation response, nearest to the previous vessel orientation θk−1:

θk = argmax
θ∈[0,2π]

Re( −UGaborf,ak−1
(ck, θ) ). (7.21)

Step 3: At the new center point ck and orientation θk, scale ak is detected as the

scale that gives the largest negative response:

ak = argmax
a>0

Re( −UGaborf,a (ck, θk) ). (7.22)

Compared to the ETOS algorithm, this algorithm is very fast since it only requires

three basic (deterministic) detection steps. However the combination of scale and

orientation detection makes the algorithm slightly less stable: orientation detection

depends on the correct detection of scale and vice versa.

7.3.2 Validation

The algorithms were tested on the green channel of color fundus images. For each

image the luminosity is normalized by disposing low frequency luminosity drifts. The

low frequency drifts are detected by large scale Gaussian blurring of the image (typically

σ = 32), and are subtracted from the original image.

7.3.2.1 Algorithm Behavior at Complex Vessel Junctions

A qualitative validation is done using a challenging set of 4 sub-images (see Fig. 7.7),

which were taken from the high-resolution fundus images of the HRFI database Budai

(2011). This set of sub-images contains crossings, overlapping bifurcations with cross-

ings, small vessels crossing large vessels, small vessels, curved vessels, parallel vessels,

etc. In each sub-image we manually placed seed points at the start of each blood vessel

and at each bifurcation. In total 27 seed points were marked. Each seed point contains

initial vessel center position, left edge position, right edge position and orientation,

denoted by c0, u0, v0 and θ0. The initial scale for the CTOS algorithm is detected as

the scale that provides the largest scale response at c0 and θ0 (see Eq. (7.22)).
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Seed points ETOS (cake) ETOS (Gabor) CTOS

Figure 7.7: Results of vessel tracking on the test image set. From left to right: seed

points, tracking results using the ETOS algorithm using invertible orientation scores

(cake wavelets), tracking results of the ETOS algorithm using non-invertible orientation

scores (Gabor wavelets at scale τ = 10) and tracking results of the CTOS algorithm

using orientation scores constructed at scales τ =5, 10, 15, 20, 25 and 30. Note that

the results of the CTOS algorithm are only represented as centerlines since vessel width

is not measured. From top to bottom: results on test image 1, 2, 3 and 4.

The tracking experiments are conducted using the following set of tracking parame-
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Table 7.1: REVIEW database comparison of successful measurement percentages (%),

mean vessel widths (Mean) and standard deviations of the measurement errors (σχ).

KPIS CLRIS VDIS HRIS

% Mean σχ % Mean σχ % Mean σχ % Mean σχ

Standard 100.0 7.51 0.00 100.0 13.79 0.00 100.0 8.83 0.00 100.0 4.35 0.00

O1 100.0 7.00 0.23 100.0 13.19 0.57 100.0 8.50 0.54 100.0 4.12 0.27

O2 100.0 7.60 0.21 100.0 13.69 0.70 100.0 8.91 0.62 100.0 4.35 0.28

O3 100.0 7.97 0.23 100.0 14.52 0.57 100.0 9.15 0.67 100.0 4.58 0.30

Gregson 100.0 7.29 0.60 100.0 12.80 2.84 100.0 10.07 1.49 100.0 7.64 1.48

HHFW 96.3 6.47 0.39 0.0 78.4 7.94 0.88 88.3 4.97 0.93

1DG 100.0 4.95 0.40 98.6 6.30 4.14 99.9 5.78 2.11 99.6 3.81 0.90

2DG 100.0 5.87 0.34 26.7 7.00 6.02 77.2 6.59 1.33 98.9 4.18 0.70

ESP 100.0 6.56 0.33 93.0 15.70 1.47 99.6 8.80 0.77 99.7 4.63 0.42

Graph 99.4 6.38 0.67 94.1 14.05 1.78 96.0 8.35 1.43 100.0 4.56 0.57

ARIA 100.0 6.30 0.29 100.0 14.27 0.95 99.0 8.07 0.95 99.5 4.66 0.32

ETOS 100.0 6.14 0.36 100.0 14.03 0.53 99.87 8.36 0.80 99.83 4.95 0.45

Measurement method abbreviations: (Standard) - Ground truth measurements

based on three human observer measurements, (O1-O3) - Human Observers 1-3, (Greg-

son) - Gregson rectangle fitting Gregson et al. (1995), (HHFW) - Half Height Full Width

Brinchmann-Hansen & Heier (1986), (1DG) - 1D Gaussian model fitting Zhou et al.

(1994), (2DG) - 2D Gaussian model fitting Lowell et al. (2004), (ESP) - Extraction of

Segment Profiles Al-Diri et al. (2009), (Graph) - Graph based method Xu et al. (2011),

(ARIA) - Autmated Retinal Image Analyzer Bankhead et al. (2012) and (ETOS) -

Edge Tracking on Orientation Scores. Dataset abbreviations: (KPIS) - the Kick

Point Image Set, (CLRIS) - Central Light Reflex Image Set, (VDIS) - Vascular Dis-

ease Image Set and (HRIS) - the downsampled High Resolution Image Set (HRIS). See

Section 7.3.2.2 for more details.

ters: The step size is set to λ = 2 pixels; The width of the scan line is set to 2ηmax = 40

pixels; The number of orientations used to construct the orientation scores is set to

No = 36 and the standard deviation of the Gaussian distributions used in the edge

probability envelope is set to σ = 3.

The ETOS algorithm was tested on both invertible orientation scores, which were

constructed by cake wavelets, and non-invertible orientation scores, which were con-

structed by Gabor wavelets. The scale of the Gabor wavelets was chosen in such a way
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that the relevant vessel features were presented as well as possible in the orientation

scores (e.g. a scale too large would only represent the very large blood vessels correctly,

and a scale too low only the small vessels). We found that a =
3

2π
10 gave best results.

For the CTOS algorithm we used a set of orientation scores constructed by Gabor

wavelets at scales a =
3τ

2π
with τ =5,10,15,20,25 and 30.

Results of the tracking experiments are shown in Fig. 7.7. From this figure we

see that, at complex situations, the ETOS method (column 2 and 3) outperforms the

CTOS method (column 4). Best results are obtained when ETOS is used with invertible

orientation scores (column 2). The ETOS algorithm acting on the invertible orientation

scores generated by the cake kernels only fails to correctly track blood vessel nr 5 from

image 3. The algorithm gives excellent results for all other vessels and manages to

track the blood vessels through all complex situations, even when the contrast of the

vessel edges is very low.

The performance of the ETOS algorithm is slightly decreased when applied to

non-invertible orientation scores based on Gabor filters. It now fails to track 3 vessels

correctly. The scale selective property of the Gabor wavelets, resulting in non-invertible

orientation scores, causes the ETOS algorithm to perform less accurately compared to

the application to invertible orientation scores.

The CTOS algorithm, which relies on a multi-scale orientation score approach, has

the lowest performance. It fails to correctly track 5 blood vessels. In some cases,

incorrect scale selection causes small parallel blood vessel to be detected as one large

blood vessel (vessel 2 with 4, and 3 with 6 in the first image). Other tracks failed as a

result of incorrect orientation detection.

In conclusion we can state that ETOS outperforms CTOS and that it gives best

results when applied on invertible orientation scores.

7.3.2.2 Validation of Width Measurements

In the previous section we showed that the ETOS algorithm is very well capable of

tracking blood vessels through complex situations. In this section we quantitatively

validate the reliability of the measured vessel widths that are provided by the ETOS

algorithm. This is done by comparing the measured widths to ground truth width

measurements provided by the REVIEW database Al-Diri et al. (2009). The REVIEW

database consists of 16 color fundus images, which can be divided into 4 subsets: 1)

Kick point image set (KPIS), 2) Central light reflex image set (CLRIS), 3) Vascular

disease image set (VDIS) and 4) the high resolution image set (HRIS). Each image set
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represents images of different quality and resolution, and all are provided with manual

width measurements that are performed by three individual observers. A ground truth

of the vessel widths is constructed by averaging the measurements of the observers.

The HRIS set contains high resolution images (3584x2438) and were down-sampled by

a factor of four before submission to the ETOS algorithm. For more information on

the dataset we would like to refer to Al-Diri et al. (2009).

When testing our algorithm, we tracked each segment by initializing the algorithm

using the first pair of manually marked edge points. The same parameters that are

described in Section 7.3.2.1 were used. Fig. 7.9 shows a selection of the tracking results

in comparison to ground truth vessel edge labeling.

In total 5066 vessel width measurements are available. The error between auto-

mated measurements and the ground truth measurements is defined as

χi = wi − wGTi = ‖ui − vi‖ − wGTi (7.23)

where wi is the estimated width as measured by the ETOS algorithm (recall Eq. (7.8)),

and wGTi is the ground truth width of the ith profile. To be able to compare our

method with others we follow the same validation procedure as described in Al-Diri

et al. (2009); Bankhead et al. (2012); Xu et al. (2011), where the main focus is on

the standard deviation of the errors. This is motivated by the idea that different

implicit definitions of vessel widths may lead to consistent errors. If this bias however

is consistent enough, the error could easily be accounted for by subtraction of a bias

constant. A low standard deviation of the errors indicates that the error is consistent.

Table 7.1 shows the validation results of our ETOS algorithm, in comparison with

methods by other authors that published their results using the same database Al-Diri

et al. (2009); Bankhead et al. (2012); Xu et al. (2011). The first four rows of the

table show the results of the manual annotations (observer 1, 2 and 3) and the golden

standard. The next four rows show results of four classic approaches to vessel width

measurements:

• Gregson: a rectangle is fitted to a vessel intensity profile, and the width is set

such that the area under the rectangle and profile Gregson et al. (1995) are equal.

• Half Height Full Width (HHFW): the standard half-height method, which uses

thresholds set half-way between the maximum and minimum intensities at either

side of an estimated center point Brinchmann-Hansen & Heier (1986).

• 1D Gaussian (1DG): a 1D Gaussian model is fit to the vessel intensity profile

Zhou et al. (1994).

169



7. VES. TRACK. I: TRACKING VIA LOCAL OPTIMIZATION

Figure 7.8: A scatter plot, plotting 5059 ground truth widths against the widths mea-

sured by our ETOS algorithm. The linear regression model y = 0.85 + 0.88x indicates

an offset of less then a pixel, suggesting that ETOS slightly over-estimates the vessel

widths. The slope of 0.88 indicates a strong positive relation between the ground truth

and measured widths.

• 2D Gaussian: a 2D Gaussian model is fit to the vessel intensity profile Lowell

et al. (2004).

The next three rows give results of the most recent, state of the art methods that

published their results:

• The Extraction of Segment Profiles (ESP) is an active contour algorithm by

Al-Diri et al. Al-Diri et al. (2009).

• The Graph method is a graph based edge segmentation technique developed by

Xu et al. Xu et al. (2011).

• The Automated Retinal Image Analyzer (ARIA) is an algorithm developed by

Bankhead et al. Bankhead et al. (2012), they used a wavelet approach to vessel

segmentation after which the edge locations are refined.

The last row shows the results we achieved using our ETOS algorithm.

The column labeled with % shows the success rate, it indicates how many width

measurements could successfully be validated (for more detail see Al-Diri et al. (2009)).
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Figure 7.9: Several tracked vessel segments by ETOS in comparison with manual width

measurements. Left column shows the ground truth vessel edge labeling as provided

by the REVIEW database. The middle column shows results obtained by the ETOS

algorithm and the right column shows both the ground truth (in white) and our results

(in red).

171



7. VES. TRACK. I: TRACKING VIA LOCAL OPTIMIZATION

The success percentage is smaller then 100% whenever measurements failed to converge,

e.g. when the distance between the ground truth and measured edge pair was too large.

The column labeled with Mean indicates the mean vessel width of all the measured

vessel profiles. The column labeled with σχ indicates the standard deviation of the

error (Eq. (7.23)), a lower σχ is favorable since it indicates that the error is consistent.

From Table 7.1 it can be observed that ESP, Graph, ARIA and our ETOS algorithm

all outperform the classic width measurement techniques. Also compared to the state

of the art methods our algorithm scores very well. The ETOS algorithm performs

remarkably well on the CLRIS dataset, which contains a large number of vessels with

the central light reflex. For these images, the standard deviation of the errors is even

lower than those of the observers. For other datasets, our method‘s performance is

comparable to the state of the art.

Fig. 7.8 shows a scatter plot of the ground truth widths against the widths measured

by our ETOS algorithm, together with a linear regression model that was fit through

these points. The points are very much centered around the line y = x, indicating a

strong positive correlation. This is confirmed by the slope of the linear regression model

y = 0.85 + 0.88x, which is near to 1. The low number of outliers in the scatter plot

confirms the low standard deviation in errors, as demonstrated by Table 7.1. The offset

of 0.85, together with slope 0.88, indicate that the ETOS algorithm has the tendency

to slightly overestimate for vessels of size up to 7 pixels and underestimates for larger

vessel sizes.

We conclude that our ETOS algorithm, which is highly capable of tracking blood

vessels through all sorts of complex situations, also provides reliable width measure-

ments.

7.4 Vasculature Tracking

In this section we describe additions to the ETOS algorithm, so as to be able to con-

struct models of the complete retinal vasculature. Our vasculature tracking algorithm

consists of:

1. Optic disk detection.

2. Seed point detection in the optic disk region.

3. Correct initialization of the ETOS algorith by robust initial edge detection.

4. Automatic termination based on a set of stopping criteria.
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5. Junction detection, classification and numbering.

6. Junction resolving.

Each of these items is described in Sections 7.4.1.1 to 7.4.1.5 and the complete algorithm

is validated in Section 7.4.2. We omit details on the basic optic disk detection algorithm

that we used in the experiments as it is inferior to the method of Sec. 5.5.2. For details

on this method (which relies on a combination of variance filtering Sinthanayothin et al.

(1999), edge focussing Bergholm (1987) and the Hough transform Hough (1962)) see

(Bekkers et al., 2014a, Sec. 4.1.1)).

7.4.1 Methods

(a) (b)

Figure 7.10: Initial seed point detection from vessel likelihood maps. (a) A vessel

likelihood map of the optic disk region, with two circular profiles on which initial seed

points are detected. Detected seed points are shown as red dots, discarded as black dots.

(b) Edge initialization and true positive seed point selection. White arrows show the

detected seed points, red arrows are seed points classified as false positives.

7.4.1.1 Vessel Likelihood Map and Seed Point Detection

For the detection of the initial seed points, a vessel likelihood map V : R2 7→ R of the

optic disk region is constructed using invertible orientation scores. For simplicity this

is done via (see (Bekkers et al., 2014a, Sec. 4.1.2) for a motivation)

V (x) = max
θ∈[0,2π]

Re( −Uf (x, θ) ). (7.24)
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(a) (b) (c)

Figure 7.11: Initial edge detection. (a) Based on local optima in the imaginary part of

Iη, potential vessel patches are formed (shown as horizontal blocks). The main patch of

interest is denoted in red and neighbouring patches of interest in non-transparent blue.

(b) The edges of the patches of interest are tracked in scale (lower part of this figure) up

to the scale σ of the corresponding toppoints (yellow points) Florack & Kuijper (2000);

Johansen (1994). (c) The strongest edges at this scale are initialized to be the vessel

edges u0 and v0.

Seed points are detected as local maxima on circular intensity profiles centered around

the optic disk (Fig. 7.10a) with radii R = {ROD, 1.5ROD}, where ROD is the detected

optic disk radius (Bekkers et al., 2014a, Sec. 4.1.1)). A seed point is discarded whenever

its value in the vessel likelihood map V is smaller then the average value of all points

on the circle. For each remaining seed point c0, the initial orientation θ0 is detected

as the orientation that provides the highest modulus of the orientation scores: θ0 =

argmax
θ∈[0,2π]

|Uf (c0, θ)|. An additional filtering step, in which the seed points are classified

as either true or false positive, is described in Section 7.4.1.2.

7.4.1.2 Initial Edge Detection

The ETOS algorithm is initialized with a starting vessel center point c0, orientation

θ0 and edges u0 and v0. Starting with an already detected initial center point c0

and orientation θ0, intensity profile Iη can be obtained from the orientation scores

using Eq. (7.12). Candidate edges are detected as local optima on the imaginary part

of Iη. Beside the main vessel edges that we are interested in, it is very likely that

multiple other candidate edges are detected as well (as a result of noise or a central

light reflex). Therefore, we use an edge focussing approach to detect the dominant

edges. Each combination of neighboring left and right edges will form potential vessel

patches (see Fig. 7.11a). Note that a blood vessel with a central light reflex consists of
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two neighboring vessel patches. We start initial edge detection by detecting the main

vessel patch of interest by scoring each edge pair (u,v), based on the initial center point

estimate c0 and initial orientation θ0, as follows:

sc0,θ0(u,v) = νθ0(u,v) e
−

1

2

‖(u + v)/2− c0‖2

(0.5〈w〉av)2
, (7.25)

with

νθ(u,v) =
1

‖u− v‖

∫ 1

0
|Uf (u + t(v − u), θ)|dt, (7.26)

and with

〈w〉av ≈ 〈w〉refav · res = (200µm) · res (7.27)

an estimated of the average vessel width in pixels, obtained from a reference vessel

width 〈w〉refav = 200µm and an estimate of the image resolution res (in pix/µm).

This estimated vessel width 〈w〉av will be used in other steps as well in order to scale

parameters which are senstive to the image resolution. The function νθ(u,v) provides

the so called vessel value and basically is the average value of the modulus of the

orientation score at orientation θ, calculated from the left to the right edge. This value

is high for elongated/vessel structures, and low for background structures in the score.

The exponential in Eq. (7.25) penalizes the distance of the edge pair to the initialized

center point. The edge pair with the highest score will be our main pair of interest.

Neighboring pairs are considered only if the distance between the nearest edges of

the main and neighboring pair is smaller than the width of the main patch, Fig. 7.11a

shows typical results. All edges from the main patch and its neighbors are now traced

(in scale) in the Gaussian scale space of profile Iη. The edges are traced up to the scale

of the first appearing toppoint. The strongest edges at this scale are chosen as the true

vessel edge points u0 and v0 (Fig. 7.11c).

An initialized seed point whose vessel value is lower than a threshold Tν is regarded

as a false positive (Fig. 7.10b). The threshold Tν is defined as:

Tν = 0.5〈ν〉av,

〈ν〉av =
1

Nsp

∑Nsp
i=1 νθi0

(ui0,v
i
0),

(7.28)

where using all Nsp initialized seed points, each with initial edge points (ui0, vi0) and

orientation (θi0), an average vessel value 〈ν〉av is calculated. All true positive seed

points are submitted to the ETOS algorithm to start expanding a model of the retinal

vasculature.
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7.4.1.3 Stopping Criteria

For ETOS to stop tracking a single vessel, three stopping-criteria are defined:

1. Tracking stops whenever a vessel being tracked leaves a prescribed region of

interest. For this purpose a mask image is generated that covers the (typically

circular) field of view in the fundus image.

2. Tracking stops whenever a blood vessel is already tracked. Each tracked segment

is used to construct a pixel map, in which each pixel within the vessel edge

contours is set to 1 and outside to 0. Whenever a point within the vessel being

tracked lies within the pixel map for d4〈w〉av/λe iterations in a row, the ETOS

algorithm terminates. Recall 〈w〉av defined in Eq. (7.27) and λ being the step

size (Fig. 7.4).

3. Tracking stops whenever the vessel value νθ (Eq. (7.26)) drops below threshold

value Tν . Here we assumed that Tν , which is based on the average vessel value

〈ν〉av calculated in the optic disk region, is a good indicator of the vessel values

of the vessels elsewhere in the retina.

7.4.1.4 Junction Detection, Classification and Numbering

In order to model the complete vasculature, starting by expanding a model from a set of

initial seed points, the vasculature tracking algorithm should also be able to automati-

cally detect junctions. Junction points are points where blood vessels bifurcate/branch

or where two blood vessels cross. Either way, at a junction point multiple orientations

may be observed.

During vessel tracking, the orientation columns at the left and right edge are

scanned for the presence of a junction point, and the location and orientation are

stored (top image Fig. 7.12). The detected junction points are clustered on position by

grouping all points whose distance to one another is smaller than 〈w〉av. Within each

cluster, the candidate junction points are clustered on orientation to prevent merg-

ing two proximate junction points. Clustering on orientation is done according to the

number of local maxima in the histogram of orientations. Finally, clusters are merged

to a single junction point by averaging the positions and by taking the most common

orientation within the cluster. The found center points and orientations are then sub-

jected to the edge initialization method described in Section 7.4.1.2, and are discarded

whenever their vessel value is lower than Tν .
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Figure 7.12: Junction detection. Left: Candidate junction points (colored arrows)

are clustered on position (indicated by white ellipsoids) after which they are clustered

on orientation (indicated by different colors). Right: Each cluster is merged to a single

junction point and based on proximity to other junction points, orientation and width,

junction points are classified as bifurcation (green arrows) or crossing (red dashed ar-

rows).

To classify between junctions and bifurcations we check for alignment of local ori-

entations in SE(2) via the sub-Riemanian metric tensor of Eq. (4.7) for C = 1 (see also

Ch. 8 for more details).

Each detected seed point is assigned two ID numbers, a number that is unique for

each vessel segment and the ID number of the vessel from which it originates. This

way the relation between each vessel segment remains known, and the vessel segments

can be organized in a hierarchical fashion. Vasculature tracking terminates whenever

all detected bifurcations and crossings are evaluated.

7.4.1.5 Junction Resolving

As mentioned in Section 7.4.1.3 vessel tracking is terminated whenever the algorithm

is tracking a vessel that is already tracked. This criterion can be met at several sit-

uations, where for each situation appropriate actions need to be taken in order to

maintain correct topological models of the vasculature. A detected point that suggests

inappropriate modeling of the vasculature will be called an unresolved junction point.

The detection of an unresolved junction point, together with the corresponding actions

that are necessary to solve it will be called junction resolving. The appropriate actions

necessary for junction resolving are based on the position of the junction point on the

already established track, whether or not the two overlapping segments have the same
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with and in the case the

The junction resolving steps are described using the following labeling: Sold is the

tracked segment of the established track before the junction point (Source), Told is the

tracked segment of the same track after the junction point (Target), Snew is the segment

of the new track before the junction point, and Tnew is the segment of the new track

after the junction point. The appropriate actions necessary for junction resolving are

based on

1. the position of the junction point on the established track (Snew-Tnew),

2. whether or not the 2 overlapping segments (Tnew, Told) have the same width,

3. and the similarity between the source and target tracks.

The detailed junction resolving scheme can be found in Bekkers (2012).

(a) Vessel tree extraction (b) Junction points (c) Distance to optic disk

Figure 7.13: (a):The hierarchical structure of the generated vasculature models allow

the segmentation and analysis of complete branches. (b) The automatic extraction of

branching (yellow) and crossing points (red). (c) The distance to the optic disk; a

feature that can easily be extracted because of the guaranteed connectedness of vessel

segments in the generated vasculature models.

7.4.2 Validation

In Section 7.3.2.2 we demonstrated the reliability of the width measurements provided

by the ETOS algorithm. In the following section we validate the topological correctness

of the complete vasculature models that are generated by our algorithm. The correct-

ness of the models is validated by analyzing the junction points. The results discussed

in this section are generated with the same parameters for the ETOS algorithm that

are described in Section 7.3.2.1. A typical model generated by the vasculature tracking

algorithm with these parameters is shown in Fig. 7.13.

178



7.4 Vasculature Tracking

Figure 7.14: A typical bifurcation (left) and crossing (right), detected from a model

generated by our vasculature tracking algorithm.

7.4.2.1 Validation of Topological Correctness

For each vessel it is known from which parent vessel it originates and bifurcations can

thus be directly extracted from the model. Crossings can easily be extracted by detect-

ing overlapping vessel segments. Fig. 7.13b provides an overview of detected junction

points for one image of the HRFI-database, Fig. 7.14 shows detailed views of a bifur-

cation and a crossing. We evaluated the junction points of the first three images from

each of the three HRFI-datasets (healthy, diabetes and glaucoma). The 9 generated

vasculature models provided 495 junction points, of which 381 were bifurcation points

and 114 were crossing points. The following types of errors for bifurcations were iden-

tified: the bifurcation was actually part of a crossing (E1), the vessel originating from

the bifurcation did not represent a blood vessel according to the ground truth pixel

map provided by the HRFI-database (E2). E2 errors indicate the presence of incor-

rect single vessel models, non-vessel elongated structures such as the optic disk border

or pathological features such as aneurysms. Crossings are extracted by searching the

vasculature model for overlapping vessel segments. A false positive crossing can thus

only occur if false positive vessel segments exists within the models. The results are

summarized in Table 7.2.

In total 290 out of 381 bifurcations and 109 out of 114 crossings were correctly

detected, corresponding to precision rates of 76.54% and 96.03% respectively. Most

of the incorrectly identified bifurcations were correct in the sense that they represent

a true blood vessel, however they were actually part of a crossing. Only 5.25% of

the bifurcations were incorrect in the sense that they did not represent a blood vessel.

While the first kind of false positive bifurcations only affects the topological correctness
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Table 7.2: Validation of detected bifurcations for three different image groups: healthy

(H), diabetes (D) and glaucoma (G).

Bifurcations Crossings

Group Correct Crossing (E1) False Vessel (E2) Total Correct Incorrect Total

H 90 (81.82%) 16 (14.55%) 4 (3.64%) 110 41 (100.0%) 0 (0.00%) 41

D 111 (73.03%) 25 (16.45%) 16 (10.53%) 152 37 (88.10%) 5 (11.90%) 42

G 89 (74.79%) 30 (25.21%) 0 (0.00%) 119 31 (100.0%) 0 (0.00%) 31

All 290 (76.12%) 71 (18.64%) 20 (5.25%) 381 109 (95.61%) 5 (4.39%) 114

of the model, the latter also pollutes the model with false positive vessel segments. The

low percentage of E2 errors indicates that the generated vasculature models are very

clean in the sense that almost all vessel segments actually represent true blood vessels.

7.5 Conclusion

In this chapter we demonstrated that by representing image information in an invertible

orientation score, one can exploit the disentanglement of crossing structures to track

blood vessels through crossing points. We introduced a new algorithm that tracks

vessel edges through the orientation score of an image (ETOS). The ETOS algorithm

can generally be used with both invertible and non-invertible orientation scores, which

were in this chapter constructed with cake wavelets and Gabor wavelets respectively.

We demonstrated that best results were obtained using invertible orientation scores. We

also introduced a fast alternative method based on vessel centerline tracking through a

multi-scale set of non-invertible orientation scores (CTOS). While the CTOS algorithm

is very fast, the multi-scale approach makes the algorithm less stable at critical vessel

points (crossings and parallel vessels) compared to ETOS.

The ETOS algorithm was used as a basis for our vasculature tracking algorithm,

which we used to construct detailed hierarchical models of the retinal vasculature.

Within this chapter we validated the reliability of the width measurements provided by

the models using ground truth data, and showed that our method performs excellently

in comparison to other state of the art algorithms. Validation of the topology of the

models showed that our method constructs clean topological models of the vasculare

tree, i.e. they contain very few false positive vessels.

Tracking within orientation scores relies on a novel and basic geometrical princi-

ple (V-plane optimization) within a sub-Riemanian manifold within SE(2). In Ap-
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pendix B.1 we relate probabilistic approaches to find optimal curves in SE(2) to this

geometric principle. Here we include supporting examples of analytic and numeric

computations on completion fields on SE(2). Such completion fields are obtained from

collision probabilities on SE(2), while the orientation score provides a whole distribu-

tion of these particles. The next step is to apply tracking by geometric control Duits

et al. (2013a) in (enhanced) orientation scores. This will allow for tracking along curves

that are minimizers of a global curve optimization problem instead of local optimization

by V-plane optimization. This will be the topic of the next Chapter 8.
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Chapter 8

Vessel Tracking Part II:

Sub-Riemannian Geodesics in

SE(2)

This chapter is based on:

Bekkers, E.J., Duits, R., Mashtakov, A., Sanguinetti, G.R.: A PDE approach to data-driven

sub-Riemannian geodesics in SE(2). SIAM Journal on Imaging Sciences (SIIMS ) 8(4)

(2015) 27402770

Bekkers, E., Duits, R., Mashtakov, A., Sanguinetti, G.: Data-driven sub-Riemannian geodesics

in SE(2). In Aujol, J.F., Nikolova, M., Papakadis, N., eds.: Scale Space and Variational

Methods in Computer Vision (SSVM ). Volume 9087 of Lecture Notes in Computer

Science. Springer International Publishing (2015) 613-625

Sanguinetti, G., Duits, R., Bekkers, E., Janssen, M., Mashtakov, A., Mirebeau, J.: Sub-

Riemannian fast marching in SE(2). In Kittler, J., Pardo, A., eds.: Proceedings of

the Iberoamerican Conference on Pattern Recognition (ICIAP), Montevideo, Uruguay,

November 9-12, 2015. Lecture Notes in Computer Science (2015) 366-374
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8.1 Introduction

In computer vision, it is common to extract salient curves in images via minimal paths

or geodesics minimizing a length functional Citti & Sarti (2006). The minimizing

geodesic is defined as the curve that minimizes the length functional, which is typically

weighted by a cost function with low values on image locations with high curve saliency.

Two classical approaches to computing data-adaptive geodesics are 1) via level set ap-

proaches for geometric/geodesic active contours (see e.g., Caselles et al. (1997); Sethian

(1999); Osher & Fedkiw (2006); Kimmel & Bruckstein (2003)), such methods provide

locally optimal geodesics, or 2) via a Hamilton-Jacobi-Bellman approach in which glob-

ally optimal geodesics are found via backtracking on geodesic distance maps that are

obtained as solutions to the eikonal equation (see e.g. Cohen & Kimmel (1997); Sethian

(1999); Peyré et al. (2010)). In this chapter we use the latter approach.

Another set of geodesic methods, partially inspired by the psychology of vision was

developed in Citti & Sarti (2006); Petitot (2003). In particular, in Citti & Sarti (2006)

the roto-translation group SE(2) = R2 o S1 endowed with a sub-Riemannian (SR)

metric models the functional architecture of the primary visual cortex and geodesics

(stratifying a minimal surface) are used for completion of occluded contours. A stable

wavelet-like approach to lift 2D-images to functions on SE(2) was proposed in Duits

et al. (2007b). Within the SE(2) framework, images and curves are lifted to the 3D

space R2 o S1 of coupled positions and orientations in which intersecting curves are

disentangled. The SR-structure applies a restriction to so-called horizontal curves which

are the curves naturally lifted from the plane (see Fig. 8.1A). For a general introduction

to sub-Riemannian geometry see Montgomery (2006). For explicit formulas of SR-

geodesics and optimal synthesis in SE(2) see Sachkov (2011). SR-geodesics in SE(2)

were also studied in Ben-Yosef & Ben-Shahar (2012); Boscain et al. (2014); Duits et al.

(2013a); Hladky & Pauls (2009); Mashtakov et al. (2013); Moiseev & Sachkov (2010).

Here, we propose a new wavefront propagation-based method for finding SR-geodesics

within SE(2) with a metric tensor depending on a smooth external cost C : SE(2) →
[δ, 1], δ > 0 fixed. Our solution is based on a Hamilton-Jacobi-Bellman (HJB) equation

in SE(2) with a SR metric that includes the cost. This method adapts a classical

PDE approach for finding geodesics used in computer vision Cohen & Kimmel (1997);

Sethian (1999); Peyré et al. (2010) to the SR-geometry case. It is of interest to interpret

the viscosity solution of the corresponding HJB equation as a sub-Riemannian distance

map Trélat (2006). Using Pontryagin’s Maximum Principle (PMP), we derive the HJB-

system with an eikonal equation providing the propagation of geodesically equidistant

surfaces departing from the origin. We prove this in Thm. 2, and we show that SR-
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Figure 8.1: A: Every point in the planar curve γ2D(t) = (x(t), y(t)) is lifted to a point

g = γ(t) = (x(t), y(t), θ(t)) ∈ SE(2) on a horizontal curve (solid line) by considering

the direction of the tangent vector γ̇2D(t) of the planar curve as the third coordinate.

Then, tangent vectors γ̇(t) ∈ span{A1|γ(t) , A3|γ(t)} = ∆|γ(t). B: In the lifted domain

SE(2) crossing structures are disentangled. C: The SR-geodesic (green) better follows

the curvilinear structure along the gap than the Riemannian geodesic (red).

geodesics are computed by backtracking via PMP. In Thm. 3, we consider the uniform

cost case (i.e. C = 1) and we show that the surfaces coincide with the SR-spheres, i.e.

the surfaces from which every tracked curve is globally optimal. This uniform cost case

has been deeply studied in Sachkov (2011) relying on explicit ODE-integration in PMP.

In this chapter, we will rely on a PDE-approach, allowing us to extend the SR geodesic

problem to the general case where C is a smooth cost uniformly bounded from below

and above. We will often use the results in Sachkov (2011) as a golden standard to

verify optimality properties of the viscosity solutions and accuracy of the involved nu-

merics of our PDE-approach. We find a remarkable accuracy and convergence towards

exact solutions, 1st Maxwell sets (i.e. the location where for the first time two distinct

geodesics with equal length meet), and to the cusp surface Boscain et al. (2014); Duits

et al. (2013a).

Potential towards applications of the method with non-uniform cost is demonstrated

by performing vessel tracking in retinal images. Here the cost function is computed by

lifting the images via oriented wavelets, as is explained in Section 8.5. Similar ideas

of computing geodesics via wavefront propagation in the extended image domain of

positions and orientations, and/or scales, have been proposed in Benmansour & Cohen

(2011); Li & Yezzi (2007); Péchaud et al. (2009b). In addition to these interesting works

we propose to rely on a SR geometry. Let us illustrate some key features of our method.

In Fig. 8.1B one can see how disentanglement of intersecting structures, due to their

difference in orientations, allows to automatically deal with crossings (a similar result
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can be obtained with the algorithm in Péchaud et al. (2009b)). The additional benefit

of using a SR geometry is shown in Fig. 8.1C where the SR-geodesic better follows

the curvilinear structure along the gap. Further benefits follow in the experimental

section where the inclusion of the SR constraint helps to resolve complex configurations

containing crossings, low contrast image regions and/or near parallel vessels. More

supporting tracking experiments are provided in the supplementary material of Bekkers

et al. (2015c), which are available at http://epubs.siam.org/doi/suppl/10.1137/

15M1018460.

8.1.1 Structure of the Chapter

First, in Section 8.2, we give the mathematical formulation of the curve optimization

problem that we aim to solve in this chapter. In Section 8.3 we describe our PDE

approach that provides the SR distance map as the viscosity solution of a boundary

value problem (BVP) involving a sub-Riemannian eikonal equation. Furthermore, in

Theorem 2, we show that sub-Riemannian geodesics are obtained from this distance

map by back-tracking (imposed by the PMP computations presented in Appendix C.1).

In Theorem 3 we show that for the uniform cost case (i.e. C = 1) such back-tracking

will never pass Maxwell-points nor conjugate points, and thereby our approach provides

only the globally optimal solutions.

In Section 8.4 we describe an iterative procedure on how to solve the BVP by solving

a sequence of initial value problems (IVP) for the corresponding HJB-equation. Before

involvement of numerics, we express the exact solutions in concatenated morphological

convolutions (erosions) and time-shifts in Appendix C.5. Here we rely on morphological

scale space PDE’s Akian et al. (1994); Burgeth & Weickert (2005); Duits et al. (2013c);

Schmidt & Weickert (2016), and we show that solutions of the iterative procedure

converge towards the sub-Riemannian distance map. Then in Section 8.5 we construct

the external cost C, based on a lifting of the original image to an orientation score

Duits et al. (2007b). In Section 8.6, we describe a numerical PDE-implementation of our

method by using left-invariant finite differences Franken & Duits (2009) in combination

with an upwind-scheme Rouy & Tourin (1992).

In Section 8.7 we present numerical experiments and results. In Subsection 8.7.1 we

verify the proposed method with comparisons to exact solutions for the uniform cost

case. We also provide simple numerical approaches (extendable to the non-uniform

cost case) to compute 1st Maxwell points and cusp points Duits et al. (2013a), which

we verify for the uniform cost case with results in Sachkov (2011). Finally, in Subsec-
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8.2 Problem Formulation

tion 8.7.2, we show application of the method to vessel tracking in optical images of the

retina. We discuss the two main parameters that are involved: the balance between

external and internal cost, and the balance between spatial and angular motion. First

feasibility studies are presented on patches, and we discuss on how to proceed towards

automated retinal vessel tree segmentation.

This chapter is an extension of an SSVM conference article Bekkers et al. (2015b).

In addition to Bekkers et al. (2015b) we include the following theoretical results: the

proofs of our main theorems (Theorem 2 and Theorem 3); the underlying differential

geometrical tools in Appendices C.1, C.2, C.3 and embedding into geometric control

theory in Appendix C.6; proof of our limiting procedure expressing exact solutions

of the sub-Riemannian HJB-system in terms of concatenated morphological convolu-

tions (with offsets) in Appendix C.5. Regarding experiments and applications, we now

include: new experiments supporting the accuracy of our method; evaluation of the

practical potential for vessel tree tracking; simple practical computation of specific

surfaces of geometric interest (cusp surface and 1st Maxwell set); analysis of the cost

function and evaluation of the parameters involved; and the road map towards a fast

marching implementation.

8.2 Problem Formulation

In this chapter we consider the sub-Riemannian manifold (SE(2),∆,Gξ,C0 ), with the

Lie group SE(2) as base manifold (cf. Sec. 2.3), with the sub-tangent bundle ∆ (cf.

Sec. 4.2 and Eq. 4.5 on page 81), and with data-adaptive sub-Riemannian metric tensor

Gξ,C0 : SE(2)×∆×∆→ R given by Eq. 4.7.

Remark 9. Define Lgφ(h) = φ(g−1h) then we have:

Gξ,C0 |γ(γ̇, γ̇) = Gξ,LgC0

∣∣∣
gγ

( (Lg)∗γ̇, (Lg)∗γ̇ ) .

Thus, Gξ,C0 is not left-invariant, but if shifting the cost as well, we can, for the compu-

tation of SR-geodesics, restrict ourselves to γ(0) = e.

We study the problem of finding SR minimizers, i.e. for given boundary conditions

γ(0) = e, γ(T ) = g, we aim to find the horizontal curve γ(t) that minimizes the total

SR length

l =

∫ T

0

√
Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t)) dt. (8.1)
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If t is the sub-Riemannian arclength parameter, which is our default parameter, then√
Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = 1 and l = T . Then, SR minimizers γ are solutions to the

optimal control problem (with free T > 0):

PCmec(SE(2)) :


γ̇ = u1 A1|γ + u3 A3|γ ,
γ(0) = e, γ(T ) = g,

l(γ(·)) =
∫ T

0 C(γ(t))
√
ξ2|u1(t)|2 + |u3(t)|2 dt→ min,

γ(t) ∈ SE(2), (u1(t), u3(t)) ∈ R2, ξ > 0.

(8.2)

In the naming1 of this geometric control problem we adhere to terminology in previous

work Boscain et al. (2014); Duits et al. (2013a). Stationary curves of the problem (8.2)

are found via PMP Agrachev & Sachkov (2013). Existence of minimizers follows from

Chow-Rashevsky and Filippov’s theorem Agrachev & Sachkov (2013), and because of

the absence of abnormal trajectories (due to the 2-bracket generating distribution ∆)

they are smooth.

Remark 10. The Cauchy-Schwarz inequality implies that the minimization problem

for the SR length functional l with free T is equivalent (see e.g. Montgomery (2006))

to the minimization problem for the action functional with fixed T :

J(γ) =
1

2

∫ T

0
C2(γ(t))(ξ2|u1(t)|2 + |u3(t)|2) dt. (8.3)

8.3 Solutions via Data-driven Wavefront Prop-

agation

The following theorem summarizes our method for the computation of data-driven

sub-Riemannian geodesics in SE(2). It is an extension of classical methods in the

Euclidean setting Osher & Fedkiw (2006); Peyré et al. (2010); Sethian (1999) to the

sub-Riemannian manifold (SE(2),∆,Gξ,C0 ). The idea is illustrated in Fig. 8.2.

Theorem 2. Let W (g) be a solution of the following boundary value problem (BVP)

with eikonal-equation{ √
(C(g))−2 (ξ−2|A1W (g)|2 + |A3W (g)|2)− 1 = 0, for g 6= e,

W (e) = 0.
(8.4)

1The label ”mec” comes from the mechanical problem in geometric control, where a so-called

Reeds-Shepp car (Remark 7) can proceed forward and backward in the path-optimization. See

also App. C.6.
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Then the isosurfaces

St = {g ∈ SE(2) |W (g) = t} (8.5)

are geodesically equidistant with unit speed C(γ(t))
√
ξ2|u1(t)|2 + |u3(t)|2 = 1 and they

provide a specific part of the SR-wavefronts departing from e = (0, 0, 0). A SR-geodesic

ending at g ∈ SE(2) is found by backward integration

γ̇b(t) = −
A1W |γb(t)

(ξ C(γb(t)))2
A1|γb(t) −

A3W |γb(t)
(C(γb(t)))2

A3|γb(t) , γb(0) = g. (8.6)

Proof The definition of geodesically equidistant surfaces is given in Definition 4 in

Appendix C.2. Furthermore, in Appendix C.2 we provide two lemmas needed for the

proof. In Lemma 1, we connect the Fenchel transform on ∆, to the Fenchel transform

on R2 to obtain the result on geodesically equidistant surfaces in (SE(2),∆,Gξ,C0 ).

Then, in Lemma 2 in Appendix C.2, we derive the HJB-equation for the homogeneous

Lagrangian as a limit from the HJB-equation for the squared Lagrangian. The back-

tracking result follows from application of PMP to the equivalent action functional

formulation (8.3), as done in Appendix C.1. Akin to the Rd-case Bressan (2010),

characteristics are found by integrating the ODE’s of the PMP where according to the

proof of Lemma 1 we must set p = dSRW , see Remark 11 below. �

The next theorem provides our main theoretical result. Recall that Maxwell points

are SE(2) points where two distinct geodesics with the same length meet. The 1st

Maxwell set corresponds to the set of Maxwell-points where the distinct geodesics meet

for the first time. In the subsequent theorem we will consider a specific solution to

(8.4), namely the viscosity solution as defined in Definition 7 in Appendix C.3.

Theorem 3. Let C = 1. Let W (g) be the viscosity solution of the BVP (8.4). Then

St, Eq. (8.5), equals the SR-sphere of radius t. Backward integration via (8.6) provides

globally optimal geodesics reaching e at t = W (g) = d(g, e) :=

min
γ ∈ C∞(R+, SE(2)),

γ̇ ∈ ∆, γ(0) = e, γ(T ) = g

∫ T

0

√
|θ̇(τ)|2 + ξ2|ẋ(τ) cos θ(τ)+ẏ(τ) sin θ(τ)|2 dτ, (8.7)

and γb(t) = γmin(d(g, e) − t). The SR-spheres St = {g ∈ SE(2) | d(g, e) = t} are

non-smooth at the 1st Maxwell set M, cf. Sachkov (2011), contained in

M⊂
{

(x, y, θ) ∈ SE(2) | x cos θ2 + y sin θ
2 = 0 ∨ |θ| = π

}
, (8.8)

and the back-tracking (8.6) does not pass the 1st Maxwell set.
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A B 

Figure 8.2: A-B: Our method provides both geodesically equidistant surfaces St (8.5)

(depicted in A) and SR-geodesics. As depicted in B: geodesic equidistance holds with

unit speed for all SR-geodesics passing through the surface, see Thm 2. Via Thm. 3 we

have that W (g) = d(g, e) and {St}t≥0 is the family of SR-spheres with radius t depicted

in this figure for the uniform cost case.

Proof of Thm. 3 can be found in Appendix C.4. The global optimality and non-

passing of the 1st Maxwell set can be observed in Fig. 8.3. For the geometrical idea of

the proof see Fig. 8.4.

Remark 11. The Hamiltonian Hfixed for the equivalent fixed time problem (8.3) equals

Hfixed(g, p) =
1

2

1

(C(g))2

(
ξ−2h2

1 + h2
3

)
=

1

2
, (8.9)

with momentum covector p = h1ω
1 +h2ω

2 +h3ω
3 expressed in dual basis {ωi}3i=1 given

by (cf. Sec. 4.4 on page 84)

〈ωi,Aj〉 = δij ⇔ ω1 = cos θdx+ sin θdy, ω2 = − sin θdx+ cos θdy, ω3 = dθ. (8.10)

The Hamiltonian Hfree for the free time problem (8.2) minimizing l equals

Hfree(g, p) =
√

2Hfixed(g, p)− 1 = 0. (8.11)

For details see Appendix C.1 and C.2. These two Hamiltonians play a central role in

the remainder of this chapter. For example, the SR-eikonal equation, Eq. (8.4), can be
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8.3 Solutions via Data-driven Wavefront Propagation

A B 

Figure 8.3: A: SR-sphere St for t = 4 obtained by the method in Thm. 2 using

C = 1 and δMe as initial condition via viscosity solutions of the HJB-equation (8.12)

implemented according to Section 8.6. B: The full SR-wavefront departing from e via

the method of characteristics and formulae in Moiseev & Sachkov (2010) giving rise

to interior folds (corresponding to multiple valued non-viscosity solutions of the HJB-

equation). The Maxwell setM consists precisely of the dashed line on x cos θ2 +y sin θ
2 =

0 and the red circles at |θ| = π. The dots are 2 (of the 4) conjugate points on St which

are limits of 1st Maxwell points (but not Maxwell points themselves). In B we see the

astroidal structure of the conjugate locus El-Alaoui et al. (1996); Sachkov (2010). In

A we see that the unique viscosity solutions stop at the 1st Maxwell set. Comparison

of A and B shows the global optimality and accuracy of our method at A.
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Figure 8.4: Maxwell point g∗ = (−4, 4, π/2) (in white) on SR-sphere St (in orange)

for C = 1. At g∗ two SR-geodesics γ1 6≡ γ2 with equal SR-length t meet (γ1(t) = γ2(t)).

From left to right: A: projection of γ1 and γ2 on the plane (x, y), B: 2D-slices (x = x∗,

y = y∗) of level sets of W (g) with distinguished value W (g) = t (again in orange). On

top we plotted the Maxwell point, the intersection of surface x cos θ2 + y sin θ
2 = 0 (in

purple, this set contains a part of the 1st Maxwell set) with the 2D-slices. C: The SR-

sphere St in SE(2), D: section around g∗ revealing the upward kink due to the viscosity

solution. From this kink we see that the tracking (8.6) does not cross a 1st Maxwell

point as indicated in red, yielding global optimality in Thm. 3.
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written as Hfree(g, p) = 0 with momentum1

p = dSRW :=
∑

i∈{1,3}

(AiW ) ωi.

Remark 12. SR geodesics loose their optimality either at a Maxwell point or at a con-

jugate point (where the integrator of the canonical ODE’s, mapping initial momentum

p0 and time t > 0 to end-point γ(t), is degenerate Agrachev & Sachkov (2013)). Some

conjugate points are limits of Maxwell points, see Fig. 8.3, where the 1st astroidal shaped

conjugate locus coincides with the void regions (cf. (Bayen & Tomlin, 2001, fig.1)) af-

ter 1st Maxwell set M. When setting a Maxwell point as initial condition, the initial

derivative dSRW
∣∣
γb(0)

is not defined. Here there are 2 horizontal directions with min-

imal slope, taking these directions our algorithm produces the results in Fig. 8.4A and

Fig. C.1.

8.4 An Iterative IVP-procedure to Solve the SR-

Eikonal BVP

To obtain an iterative implementation to obtain the viscosity solution of the SR-eikonal

BVP given by (8.4), we rely on viscosity solutions of initial value problems (IVP). In

this approach we put a connection between morphological scale spaces Akian et al.

(1994); Burgeth & Weickert (2005), and morphological convolutions with morphological

kernels, on the SR manifold (SE(2),∆,Gξ,C0 ) and the SR eikonal BVP.

In order to solve the sub-Riemannian eikonal BVP (8.4) we resort to subsequent

auxiliary IVP’s on SE(2) for each r ∈ [rn, rn+1], with rn = nε at step n ∈ N ∪ {0},
ε > 0 fixed:

∂W ε
n+1

∂r (g, r) = 1−
√

(C(g))−2
(
ξ−2|A1W ε

n+1(g, r)|2 + |A3W ε
n+1(g, r)|2

)
,

W ε
n+1(g, rn) = W ε

n(g, rn) for g 6= e,

W ε
n+1(e, rn) = 0

(8.12)

for n = 1, 2, . . ., and{
∂W ε

1
∂r (g, r) = 1−

√
(C(g))−2 (ξ−2|A1W ε

1 (g, r)|2 + |A3W ε
1 (g, r)|2),

W ε
1 (g, 0) = δMe (g),

(8.13)

1Recall Example 4 on page 84, and note that the sub-Riemannian gradient ∇SRW =

(Gξ,C0 )−1dW = C−2
∑

i∈{1,3}
ξ−2
i AiWAi, with ξ1 = ξ, ξ3 = 1, by definition is the Riesz-

representative (being a vector) of this SR-derivative (being a covector).
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for n = 0, where δMe is the morphological delta (i.e. the analogue of the Dirac delta

in morphological scale space methods Akian et al. (1994); Burgeth & Weickert (2005))

given by

δMe (g) =

{
0 if g = e,

+∞ else.
(8.14)

Let W ε
n+1 denote the viscosity solution of (8.12) carrying the following support

supp(W ε
n+1) = SE(2)× [rn, rn+1], with rn = nε,

so in (8.12) at the n-th iteration (n ≥ 1) we use, for g 6= e, the end condition W ε
n(g, rn)

of the n-th evolution as an initial condition W ε
n+1(g, rn) of the (n + 1)-th evolution.

Only for g = e we set initial condition W ε
n+1(e, rn) = 0. Then we define the pointwise

limit

W∞(g) := lim
ε→0

(
lim
n→∞

W ε
n+1(g, (n+ 1)ε)

)
. (8.15)

Finally, regarding the application of our optimality results, it is important that each

IVP-solution W ε
n+1(g, r) is the unique viscosity solution of (8.12), as then via (8.15) the

viscosity property for the viscosity solutions of the HJB-IVP problem naturally carries

over to the viscosity property of the viscosity solutions of system (8.4). Thus we obtain

W = W∞ as the unique viscosity solution of the SR-eikonal BVP.

Details on the limit (8.15), which takes place in the continuous setting before nu-

meric discretization is applied, can be found in Appendix C.5. In Appendix C.5 we

provide solutions of (8.12) by a time shift in combination with a morphological convo-

lution1 with the corresponding morphological kernel, and show why the double limit is

necessary. A quick intuitive explanation is given in Figure 8.5, where we see that for

ε > 0 we obtain stair-casing (due to a discrete rounding of the distance/value function)

and where in the limit ε ↓ 0 the solution W∞(g) = W (g) = d(g, e) is obtained.

Remark 13. The choice of our initial condition in Eq. (8.13) comes from the re-

lation between linear and morphological scale spaces Akian et al. (1994); Burgeth &

Weickert (2005), recently refined by Schmidt & Weickert (2016) using the Cramer-

Fourier transform. Here, for linear SE(2)-convolutions over the (·,+)-algebra one has

δe ∗SE(2) U = U . For morphological SE(2)-convolutions (erosions) over the (min,+)-

algebra Duits et al. (2013a) one has a similar property:

(δMe 	 U)(g) := inf
q∈SE(2)

{
δMe (q−1g) + U(q)

}
= U(g), (8.16)

1In fact, an ‘erosion’ according to the terminology in morphological scale space theory, see

e.g. Burgeth & Weickert (2005).
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Figure 8.5: Illustration of the pointwise limits in Eq. (8.15). Top: plot of g 7→
lim
n→∞

W ε
n+1(g, rn+1) (from left to right, resp. for ε = 1, ε = 0.5 and ε ↓ 0)

which is piecewise step-function, see Corollary 2 in Appendix C.5. Along the red

axis {(x, 0, 0) | x ∈ R} we have x = d(g, e). Bottom: the corresponding graph of

x 7→ W ε
n+1((x, 0, 0), rn+1). As n grows the staircase grows, as ε → 0 the size of the

steps in the staircase vanishes and we see W∞(g) = d(g, e) in the most right column.
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where we recall (8.14). This is important for representing viscosity solutions of left-

invariant HJB-equations on SE(2) by Lax-Oleinik Evans (1997) type of formulas (akin

to the SE(3)-case Duits et al. (2013c)). This is for example employed in Appendix C.5.

Remark 14. The stair-casing limit depicted in Figure 8.5 is similar to the basic eikonal

BVP on R with solution d(x, 0) = |x|. On R the approach (8.12), (8.13) and (8.15) pro-

vides the pointwise limit: |x| = lim
ε→0

∞∑
m=0

rm+1 1[rm,rm+ε](|x|) = lim
ε→0

d |x|
ε
e∑

m=0
rm+1 1[rm,rm+ε](|x|),

with rm = mε.

Remark 15. By general semigroup theory Akian et al. (1994), one cannot impose both

the initial condition and a boundary condition W ε(e, r) = 0 at the same time, which

forced us to update the initial condition (at g = e) in our iteration scheme (8.12). The

separate updating with value 0 for g = e in Eq. (8.12) is crucial for the convergence in

Eq. (8.15).

8.5 Construction of the Non-Uniform Cost

The cost should have low values on locations with high curve saliency, and high values

otherwise. Based on image f we define the cost-function δ ≤ C ≤ 1 via

C(x, y, θ) =
1

1 + λ
∣∣∣ (A2

2Uf )+(x,y,θ)

‖(A2
2Uf )+‖∞

∣∣∣p , (8.17)

where λ ≥ 0, p ∈ N; Uf : SE(2) → R is a lift of the image, with ‖ · ‖∞ the sup-norm,

and

(A2
2Uf )+(x, y, θ) = max{0, (− sin θ∂x + cos θ∂y)

2Uf (x, y, θ)}

is a ridge-detector Lindeberg (1998) where we use spatially isotropic Gaussian deriva-

tives Franken & Duits (2009). Our ridge-detector, which is similar to the vessel en-

hancement method by Zhang et al. (2016a) discussed in Ch. 6, is based on a 2nd order

derivative in the A2-direction and gives responses only if there are convex variations

orthogonal to the elongated-structures of interest in Uf (x, y, θ). Note that by (8.17) we

have δ = 1
1+λ ≤ C ≤ 1.

The lifting is done using real-valued anisotropic wavelets ψ via the orientation score

transform (cf. Eq. (2.1) on page 25). To do the lifting we used the real part of cake

wavelets (cf. Subsec. 2.1.5). Other type of 2D wavelets could be used as well. In related

work by Péchaud et al. Péchaud et al. (2009b) the cost C was obtained via normalized

cross correlation with a set of templates.
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8.6 Implementation

In Eq. (8.17) two parameters, λ and p, are introduced. Parameter λ can be used

to increase the contrast in the cost function. E.g., by choosing λ = 0 one creates a

uniform cost function and by choosing λ > 0 data-adaptivity is included. Parameter

p > 1 controls the steepness of the cost function, and in our experiments it is always

set to p = 3.

Figure 8.6: Illustration of the cost function C. Left: retinal image patch f . Middle:

corresponding function Uf (‘invertible orientation score’) using the real part of a cake-

wavelet ψ Duits et al. (2007b). Right: the cost function C computed via Eq. (8.17)

visualized via volume rendering. The orange corresponds to locations where C has a low

value.

8.6 Implementation

To compute the SR geodesics with given boundary conditions we first construct the

value function W in Eq. (8.4), implementing the iterations at Eq. (8.12), after which we

obtain our geodesic γ via a gradient descent on W from g back to e, recall Thm. 2 (and

Thm. 3). Throughout this section, we keep using the continuous notation g ∈ SE(2)

although within all numerical procedures g is sampled on the following (2N + 1) ×
(2N + 1)× (2Nθ) equidistant grid:

{(xi, yj , θk) |xi = sxyi, yj = sxyj, θk = sθk, with i, j = −N, . . .N, k = −Nθ+1, . . . Nθ},
(8.18)

with step-sizes sθ = π
Nθ

, sxy = xmax
N , with N,Nθ ∈ N. As a default we set N = 70,

xmax = 7, Nθ = 64. The time-discretization grid is also chosen to be equidistant with

time steps ∆r = ε.

On this grid we compute an iterative upwind scheme to obtain the viscosity solution

W ε at iteration Eq. (8.12). Here we initialize W ε(·, 0) = δMD
e (·), with the discrete

197



8. VES. TRACK. II: SUB-RIEMANNIAN GEODESICS IN SE(2)

morphological delta, given by δMD
e (g) = 0 if g = e and 1 if g 6= e, and iterate{

W ε(g, r + ∆r) = W ε(g, r)−∆r Hfree
D (g, dW ε(g, r)) for g 6= e

W ε(e, r + ∆r) = 0,
(8.19)

with free-time Hamiltonian (see Appendix C.1, Eq. (C.4)) given by

Hfree
D (g, dW ε(g, r)) =

(
1

C(g)

√
ξ−2(A1W ε(g, r))2 + (A3W ε(g, r))2 − 1

)
,

until convergence. We set ∆r = ε in Eq. (8.12). In the numerical upwind scheme, the

left-invariant derivatives are calculated via

AiW ε(g, r) = max
{
A−i W

ε(g, r),−A+
i W

ε(g, r), 0
}
,

where A+
i and A−i denote respectively the forward and backward finite difference ap-

proximations of Ai. Note that W ε in (8.19) is a first order finite difference approxi-

mation of W ε
n+1 in (8.12) at time interval r ∈ [nε, (n + 1)ε] and we iterate until the

subsequent L∞-norms differ less than 10−6. This upwind scheme is a straightforward

extension of the scheme proposed in Rouy & Tourin (1992) for HJB-systems on Rn. It

produces sharp ridges at the 1st Maxwell set (cf. Fig. 8.3) as it is consistent at local

maxima. For numerical accuracy and left-invariance we applied finite differences in

the moving frame of left-invariant vector fields, using B-spline interpolation. This is

favorable over finite differences in the fixed coordinate grid {x, y, θ}. For details on

these kind of left-invariant finite differences, and comparisons to other finite difference

implementations (e.g. in fixed coordinate grid) see Franken & Duits (2009).

In our implementation the origin e is treated separately as our initial condition is

not differentiable. We apply the update W ε(e, r) = 0 for all r ≥ 0. We set step size

ε = 0.1 min(sxyξ, sθ) with sxy and sθ step sizes in respectively the x-y-directions and

θ-direction.

8.7 Experiments and Results

8.7.1 Verification for the Uniform Cost Case

Throughout this chapter we have illustrated the theory with figures obtained via our

new wavefront propagation technique. As the problem (8.2) for C = 1 was solved

Sachkov (2011);Duits et al. (2013a) using different parameterizations, we use this as a

golden standard for comparison. In this subsection we present experiments that support

the accuracy of our method.
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8.7.1.1 Comparison of BVP Solutions and the Cuspsurface

Let us consider Fig. 8.7A. Here an arbitrary SR-geodesic between the SE(2) points

γ(0) = e and γ(T ) = (6, 3, π/3) is found via the IVP in Sachkov (2011) with end-time

T = 7.11 and initial momentum

p0 = h1(0)dx+ h3(0)dy + h2(0)dθ,

with h1(0) =
√

1− |h3(0)|2, h3(0) = 0.430 and h2(0) = −0.428, is used for reference

(in black in Fig. 8.7A). Using the semi-analytic approach for solving the BVP in Duits

et al. (2013a) an almost identical result is obtained. The curves computed with our

method with sxy = 0.1, and with angular step-sizes of sθ = 2π/12 and sθ = 2π/64 are

shown in Fig. 8.7A in red and green respectively. Already at low resolution we observe

accurate results. In Fig. 8.3 we compare one SR-sphere for T = 4 (Fig. 8.3A) found via

our method with the exact SR-wavefront departing from e (Fig. 8.3B) computed by the

method of characteristics Moiseev & Sachkov (2010). We observe that our solution is

non-smooth at the 1st Maxwell setM (8.8) and that the unique viscosity solution stops

precisely there, confirming Theorem 3. Finally, the blue surface in Fig. 8.7B represents

the cusp surface, i.e. the surface consisting of all cusp points. Cusps are points that

can occur on geodesics when they are projected into the image plane (see Fig. 8.7B).

This happens at points g where the geodesic is tangent to ∂θ|g = A3|g. Then, the cusp

surface Scusp is easily computed as a zero-crossing:

Scusp := {g ∈ SE(2) | A1W (g) = 0}. (8.20)

It is in agreement with the exact cusp surface analytically computed in (Duits et al.,

2013a, Fig. 11).

The geometric idea behind (8.20) is that we have a cusp at time t if u1(t) =
1

C2(γ(t))
h1(t) = 1

C2(γ(t))
A1W (γ(t)) = 0 which directly follows from Appendix C.1. For

further details on the set of end-conditions reachable without cusps, see Appendix C.6.

8.7.1.2 Comparison and Computation of SR-spheres

In order to validate the solutions obtained with our PDE method we compare them

with the exact SR-distance map. This exact SR-distance map was computed by explicit

formulas for SR-geodesics (given on p.386 in Moiseev & Sachkov (2010)) in combination

with explicit formulas for the cut time, which coincides with the 1st Maxwell time,

given by (5.18)–(5.19) in Moiseev & Sachkov (2010). The experiments were done in the

following way:
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B A 

Figure 8.7: A: SR-geodesic example for the uniform cost case shows our PDE-

discretizations (with 12 and 64 sampled orientations in red and green respectively) are

accurate in comparison to analytic solutions in Duits et al. (2013a); Sachkov (2011)

(in black). B: The blue surface represents the cusp surface numerically computed via

the proposed HJB-system (with C = 1) and subsequent calculation of the zero-crossings

of A1W (x, y, θ). Indeed if a SR-geodesic (in green) passes this surface, it passes in θ-

direction (with infinite curvature Boscain et al. (2014); Duits et al. (2013a)), yielding

a cusp on the spatial ground plane. The same blue surface is computed in (Duits et al.,

2013a, Fig. 11). We even see the additional fold (top left passing the grey-plane) as

some globally optimal SR-geodesics even exhibit 2 cusps.

1. Compute a set of end points:

EP (T ) = {(xi, yi, θi) = Exp(pi, T ) | pi ∈ C, T ≤ tMAX
1 (pi), i = 1, . . . imax}

lying on the SR-sphere of fixed radius T using analytic formulas for the exponen-

tial map (cf. Remark 16 below) and 1st Maxwell time tMAX
1 Moiseev & Sachkov

(2010). The number of end points was chosen as imax = 72 T 2 and C is the

cylinder in momentum space given by

C = {p ∈ T ∗e (SE(2)) | Hfixed(e, p) = 1/2
}
,

where we recall (8.9). The sampling points pi are taken by a uniform grid on

the rectifying coordinates (ϕ, k) of the mathematical pendulum (the ODE that

arises in the PMP procedure, cf. (Moiseev & Sachkov, 2010, ch:3.2)), both for the

rotating pendulum case (pi ∈ C2, yielding S-curves) and the oscillating pendulum

case (pi ∈ C1, yielding U -curves), where we note that C = C1 ∪ C2.
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2. Evaluate the distance function W (gi) = W (xi, yi, θi) obtained by our numerical

PDE-approach in section 8.6 for every point of the set EP (T ). We use 3rd order

Hermite interpolation for W (xi, yi, θi) at g = gi ∈ EP (T ) in between the grid

(8.18).

3. Compute the maximum absolute error max
gi∈EP (T )

|W (gi)− T | and the maximum

relative error max
gi∈EP (T )

(|W (gi)− T |/T ).

Remark 16. The exponential map Exp : C × R+ → SE(2) provides the end-point

(x(t), y(t), θ(t)) = γ(t) = Exp(p0, t) of the SR-geodesic γ, given SR-arclength t and

initial momentum p0 ∈ T ∗e (SE(2)). This exponential map integrates the PMP ODE’s

in Appendix C.1, and should not be confused with exponential map from the Lie algebra

to the Lie group.

The absolute and relative errors of the SR-distance computations for each of the

end points located on SR-spheres of radii T are presented in Figure 8.9. The red graph

corresponds to a sampling of (N,Nθ) = (50, 64), recall Eq. (8.18), used in the SR-

distance computation by our numerical PDE approach, and the blue graph corresponds

to the finer sampling (N,Nθ) = (140, 128). We see that the maximum absolute error

does not grow, and that the relative error decreases when increasing the radius of the

SR-sphere. Increase of sampling rate improves the result. For the finer sampling case,

neither absolute nor relative errors exceed 0.1.

8.7.1.3 Comparison and Computation of 1st Maxwell Set

We can compute the 1st Maxwell set (recall eq. (8.8), see also Appendix C.4) as the

set of points where forward and backward left-invariant derivatives acting on the SR-

distance map have different signs:

Mnum =
⋃

i∈{1,3}

{(x, y, θ) ∈ SE(2) | A+
i W (x, y, θ) > 0, A−i W (x, y, θ) < 0}. (8.21)

Here i = 1 corresponds to the local component of the 1st Maxwell set, and i = 2

corresponds to the global component of the 1st Maxwell set. The local component

consists of two connected components lying on the surface given by x cos θ2 +y sin θ
2 = 0

(i.e. the purple surface in Figure 8.4), and the global component is the plane given

by equation θ = π (for details, see Sachkov (2011)). In Figure 8.10 we compare the

local component of Mnum computed by our PDE approach with its exact counterpart

M, presented in (Sachkov, 2011, thm 3.5). It shows that Mnum is close to the exact

201



8. VES. TRACK. II: SUB-RIEMANNIAN GEODESICS IN SE(2)

Figure 8.8: Comparison of SR-spheres obtained by our numerical PDE-approach and

the set of points EP (T ) lying on exact SR-spheres obtained by analytic formulas. From

left to right: the SR-sphere with radius t = T = 3, T = 4 and T = 5. The color

indicates the difference between the exact and the numerical values of the SR-distance

(blue for smallest, green for middle, and red for highest differences). Thus, we see our

algorithm is accurate, in particular along the fixed coordinate grid directions along x

and θ-axis.

M. Although not shown here a similar picture was obtained for the global component,

whereMnum indeed covers the plane θ = π. Summarizing, this experiment verifies the

correctness of the proposed method, but it also shows that the method allows to observe

the behavior of the 1st Maxwell set. Eq. (8.21) allows us to numerically compute the

Maxwell set for the data-driven cases C 6= 1 where exact solutions are out of reach.

8.7.2 Feasibility Study for Application in Retinal Imaging

As a feasibility study for the application of our method in retinal images we tested the

method on numerous image patches exhibiting both crossings, bifurcations, and low

contrast, (Fig. 8.11, Fig. 8.12). For each seed point g0 the value function g 7→W (g−1
0 g)

was calculated according to the implementation details in Section 8.6, after which

multiple end-points were traced back to the seed point. The image dimensions of the

patches is 180× 140.

For the construction of the cost function (see e.g. Fig. 8.6) we set p = 3, and the

lifting was done using cake wavelets with angular resolution π/16. More precisely we

used a cake-wavelet with standard parameters (N = 8, Nθ = 32, sθ = π
8 , σs = 20px, γ =

0.8), for details see (Bekkers et al., 2014a, ch:2). The precise choice of anisotropic

wavelet is not decisive for the algorithm (so other type of anisotropic wavelets and cost

constructions could have been applied as well).

In all experiments we run with 4 settings for the two parameters (ξ, λ) determining
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A: Maximum absolute error B: Maximum relative error

Figure 8.9: Maximum error in computing of SR-distance for end points located on

SR-spheres of different radii t = T (from 1 to 7 with step 0.1), with number of end

points imax = 72T 2. In red: errors are computed on a courser grid (N,Nθ) = (50, 64)

and in blue: errors on a finer grid (N,Nθ) = (140, 128), with step sizes sθ = 2π
Nθ

and

sxy = 7
N .

the sub-Riemannian geodesics, we set ξsmall = 0.05, ξlarge = 0.1, λsmall = 10, λlarge =

100. The idea of these settings is to see the effect of the parameters, where we recall ξ

controls global stiffness of the curves, and λ controls the influence of the external cost.

We also include comparisons to a Riemannian wavefront propagation method on R2,

and a Riemannian wavefront propagation method on SE(2). These comparisons clearly

show the advantage of including the sub-Riemannian geometry in the problem. For

results on two representative patches, see Figure 8.11. For results on 25 other patches

see the supplementary materials of Bekkers et al. (2015c), available at http://epubs.

siam.org/doi/suppl/10.1137/15M1018460. Here, for fair and basic comparison of

the geometries, we rely on the same cost function C. That is, we compare to

• Riemannian geodesics γ(t) = (x(t), y(t), θ(t)) in (SE(2),Gξ,C1 ) with

Gξ,C1

∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = (C(γ(t)))2 (|θ̇(t)|2 + ξ2|ẋ(t)|2 + ξ2|ẏ(t)|2)

• Riemannian geodesics x(s) = (x(s), y(s)) in (R2,GCR2) with metric tensor

GcR2

∣∣
x(s)

(ẋ(s), ẋ(s)) = (c(x(s)))2 (|ẋ(s)|2 + |ẏ(s)|2),

with c(x(s), y(s)) = min
θ∈[0,2π)

C(x(s), y(s), θ).

Typically, the wavefront propagation tracking methods on (R2,GcR2) produce incorrect

short-cuts at crossings and very non-smooth curves. The Riemannian wavefront propa-

gation tracking method (with spatial isotropy) (SE(2),Gξ,C1 ) often deals correctly with

crossings, but typically suffers from incorrect jumps towards nearly parallel neighboring
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Figure 8.10: Comparison of the 1st Maxwell set obtained by our numerical PDE-

approach with the exact 1st Maxwell set Sachkov (2011). Note that the local components

of the 1st Maxwell set are part of the purple surface in Figure 8.4. Left: Local compo-

nent of the exact Maxwell setM obtained by (Sachkov, 2011, thm 3.5) (where we recall

that the cut locus coincides with the closure M of the first Maxwell set (Sachkov, 2010,

th:3.3)). Middle: Local components of the Maxwell set Mnum computed numerically

by eq. (8.21). Right: Single case of a Maxwell point on the local part of the Maxwell

set.

vessels. Also it yields non-smooth curves. This can be corrected for when including

extreme anisotropy, see Sec. 4.3.2. The sub-Riemannian wavefront propagation method

produces smooth curves that appropriately deal with crossings. For high contrast im-

ages with reliable cost function C best results are obtained with low ξ and large λ.

However, in low contrast images and/or patient data with severe abnormalities, low λ

is preferable, as in these cases the cost function is less reliable. This can be observed

in Figure 8.12.

The experiments indicate that ξ = 0.01 (small) in combination with λ = 100 (large)

are preferable on our patches. This typically holds for good quality retinal images of

healthy volunteers. In lower quality retinal images of diabetic patients, however, the

cost function is less reliable and here λ = 10 (small) can be preferable, see Figure 8.12.

However, it might not be optimal to set the ξ parameter globally, as we did in these

experiments, as smaller vessels are often more tortuous and therefore require more

flexibility, see e.g. (Bekkers et al., 2015b, fig.7). Furthermore, we do not include precise

centerline extraction, which could e.g. be achieved by considering the vessel width as

an extra feature (as in Benmansour & Cohen (2011); Li & Yezzi (2007); Péchaud et al.

(2009b)).
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Figure 8.11: Data-adaptive sub-Riemannian geodesics obtained via our proposed track-

ing method (Thm. 2), with external cost (8.17), with p = 3, ξ equals ξsmall = 0.01,

ξlarge = 0.1 and λ equals λsmall = 10, λlarge = 100. We applied tracking from 2 seed-

points each with several end-points (to test the crossings/bifurcations). To distinguish

between tracks from the two seed-points we plotted tracts in different lighting-intensity.

We indicated the valid cases only if all trajectories are correctly dealt with.
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Figure 8.12: Tractography (again for λ = λsmall = 10, λ = λlarge = 100 and ξ = 0.01,

p = 3) in a patch of a challenging low-contrast retinal image of a diabetic patient. In

case of low-contrast (and less reliable cost) it is better to keep λ small, in contrast to

high contrast cases depicted in Figure 8.11. To distinguish between tracks from the two

seed-points we plotted tracts in different lighting-intensity.

8.7.3 Sub-Riemannian Fast Marching

It is possible to construct a family of anisotropic Riemannian metric tensors, recall

(8.10): Gξ,Cε = C2 (ξ2ω1⊗ω1 +ξ2ε−2ω2⊗ω2)+ω3⊗ω3, which bridges the SR-metric Gξ,C0

of our method (obtained by ε→ 0) to the full Riemannian metric tensor Gξ,C1 (obtained

by ε → 1). For the values of ξ considered here, Riemannian geodesics and smooth

Riemannian spheres for highly anisotropic cases ε ≤ 0.1 approximate SR-geodesics

and non-smooth SR-spheres. In fact, with such extreme anisotropy in the Riemannian

setting, the non-smooth ridges M in the SR spheres (see e.g. the 1st Maxwell sets in

Figure 8.3) are only little smoothed, and also the cusp-surface hardly changes. This

observation allows to use the anisotropic fast marching (FM) Mirebeau (2014) as an

alternative fast method for computing the solution of (8.4), instead of the iterative

upwind finite difference approach in Section 8.4. The numerical advantages of such a

fast marching approach are discussed next.

In Sanguinetti et al. (2015) we have studied the computational advantages of using

an anisotropic fast marching method for computing sub-Riemannian geodesics using

the approximate metric tensor (Subsec. 4.3.2). Full details can be found in Sanguinetti

et al. (2015), here we will only summarize the findings.
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In our experiment the sub-Riemannian distance volumes W are computed using the

PDE approach presented in this chapter, and the fast marching approach presented in

Sanguinetti et al. (2015). The fast marching method relies on the lattice basis reduction

(FM-LBR) proposed in Mirebeau (2014). The generated volumes W were compared

against the solutions via the approach described in Subsec. 8.7.1.2. The volumes W

are sampled on an increasingly finer grid, where the spatial directions are sampled with

2n + 1 samples, and the angular direction with 2n samples from 0 to 2π − π/n. The

grid is thus of size (2n+ 1)(2n+ 1)(2n− 1).

The graph in Fig. 8.13(left) shows the comparison of the accuracy achieved in the

computation of the SR-sphere of radius t = 4 when n increases. The behaviour for SR-

spheres of different radii is similar. The CPU time is compared in Fig. 8.13(center). The

3rd plot illustrates the method for computing the accuracy. The orange surface is the

SR-sphere of radius t = 4 computed with the FM-LBR method on a grid corresponding

to n = 101. The points are the geodesic endpoints, their color is proportional to the

error of the FM-LBR (blue-low, green-medium, red-high error). The first observation

is that even though the iterative method is more accurate, both methods seem to have

the same order of convergence (the slope in the log-log graphs) when the grid resolution

increases. This seems reasonable as both methods use first order approximations of the

derivatives. Also, we hypothesise that the offset in favour of the iterative method is

due to the Riemannian approximation of the SR-metric (i.e. selecting ε = 0.1), but this

needs further investigation. The second key observation is that the CPU time increases

dramatically with n for the iterative method. Therefore, it is clear that we can achieve

the same accuracy using the FM-LBR but with much less computational effort, which

is of vital importance in real world applications such as vessel tracking.

8.8 Conclusion

In this chapter we proposed a novel, flexible and accurate numerical method for com-

puting solutions to the optimal control problem (8.2), i.e. finding SR-geodesics in

SE(2) with non-uniform cost. The method generalizes the classical approach Os-

her & Fedkiw (2006); Peyré et al. (2010); Sethian (1999) for finding cost adaptive

geodesics in Euclidean settings to the SR-case. It consists of a wavefront propagation of

geodesically equidistant surfaces computed via the viscosity solution of a HJB-system

in (SE(2),∆,Gξ,C0 ), and subsequent backwards integration, which gives the optimal

tracks. We used PMP to derive both the HJB-equation and the backtracking. We have

shown global optimality for the uniform cost case (C=1) and that our method generates
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Figure 8.13: Validation via comparison in the uniform cost case. The experiment

(illustrated on the left, see the text) shows that even though the iterative method in

Subsec. 8.6 is more accurate we can still achieve with the FM-LBR method better results

and with less CPU effort, just by increasing the grid sampling.

SR-spheres. Compared to previous works regarding SR-geodesics in (SE(2),∆,Gξ,10 )

Duits et al. (2013a); Mashtakov et al. (2013); Sachkov (2011), we solve the bound-

ary value problem without shooting techniques, using a computational method that

always provides the optimal solution. Compared with wavefront propagation methods

on the extended domain of positions and orientations in image analysis Péchaud et al.

(2009a,b), we consider a SR-metric instead of a Riemannian metric. Results in retinal

vessel tracking are promising, and by our data-adaptive approach, it now follows that

sub-Riemannian geometry can make a considerable difference in real medical imaging

applications.
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Chapter 9

Vessel Tracking Part III:

Sub-Riemannian Geodesics in

SO(3)

This chapter is based on:

Mashtakov, A., Duits, R., Sachkov, Y., Bekkers, E. & Beschastnyi, I. (2016). Tracking

of lines in spherical images via sub-riemannian geodesics on SO(3). arXiv preprint

arXiv:1604.03800
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This chapter is based on joint work with Alexey Mashtakov, Remco Duits, Yuri

Sachkov and Ivan Beschatsnyi and is published in Mashtakov et al. (2016). They

are gratefully acknowledged for the theoretical development of data-adaptive sub-

Riemannian geodesics in SO(3). The publication Mashtakov et al. (2016) has a strong

focus on the theoretical analysis of sub-Riemannian geodesics in SO(3), including exact

solutions of sub-Riemannian geodesics and an extensive analysis of wavefronts, opti-

mality, Maxwell sets, and conjugate points. In this chapter we describe the adaptation

of the method of Ch. 8 for data-adaptive sub-Riemannian geodesics in SE(2) to the

Lie group SO(3), and primarily focus on practical aspects. For full theoretical details

we refer to Mashtakov et al. (2016). Additionally, we propose in Sec. 9.4 an alternative

derivation of the analytic solutions for sub-Riemannian geodesics, which is based on

the left-Cartan connection (Ch. 4).

9.1 Introduction

In the previous Ch. 8 we described methods for computing data-adaptive sub-Riemannian

geodesics in the Lie group SE(2). The objective there was to track lines in flat im-

ages (i.e., on R2). The retina, however, is a spherical object and it is in this respect

more natural to model the data by spherical images and to include the spherical object

geometry in the tracking. As such, in this chapter we extend the line tracking frame-

work described in Ch. 8 to tracking of lines in spherical images (e.g. the images of the

retina, see Fig. 9.1). This adaptation requires a sub-Riemannian manifold structure

in a different Lie group, namely the group SO(3) (consisting of 3D rotations) acting

transitively on the 2-sphere S2. In this chapter we describe the necessary adaptations

of Ch. 8 for tracking in spherical images, and compare the difference between the two

geometrical models (SE(2) vs SO(3)).

Here we study the problem Pcurve(S2) of finding a smooth curve n(·) on a unit

sphere S2 that satisfies given boundary conditions (both positions and velocities)

n(0) = n0, n(l) = n1, n′(0) = n′0, n′(l) = n′1

and minimizes the functional ∫ l

0
C(n(s))

√
ξ2 + k2

g(s) ds,

where kg(·) denotes the geodesic curvature of n(·), s denotes the spherical arclength,

and total length l is free, see Fig. 9.2. In the optimization functional we also include an
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external cost factor C : S2 → R+ adding for adaptation to given spherical image data.

We state this problem, to which we refer as Pcurve(S2), more explicitly in Section 9.3.1.

Figure 9.1: Photography of the retina. A part of the retina is projected onto the

image plane. The camera coordinates are denoted by (X,Y ), and object coordinates are

denoted by (x̄, ȳ).

The problem Pcurve(S2) is a spherical analogue of a well-known problem Pcurve(R2)

(see e.g. Fig. 9.2, App. C.6, and Boscain et al. (2014); Duits et al. (2013a)) of finding

a smooth curve x(·) on a plane R2 that satisfies given boundary conditions

x(0) = x0 = (X0, Y0), x′(0) = x′0 = (cos Θ0, sin Θ0),

x(l) = x1 = (X1, Y1), x′(l) = x′1 = (cos Θ1, sin Θ1),

and minimizes the functional ∫ l

0
c(x(s))

√
ξ2 + k2(s) ds,

where k(s) denotes the curvature and l denotes the total length. The smooth external

cost factor c : R2 → R+ is added for adaptation to given flat image data (see e.g.

Subsec. 8.7.2), and is bounded away from 0.
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While our main and first motivation to study sub-Riemannian geodesics in SO(3)

comes from the application in (spherical) retinal image analysis, there are two additional

relevant motivations. The second motivation comes from models of the visual system

of mammals. As mentioned by U. Boscain and F. Rossi Boscain & Rossi (2008),

the problem Pcurve(S2) can be considered as a spherical extension of a (flat) cortical

based model Pcurve(R2) for perceptual completion, proposed by G. Citti, A. Sarti Citti

& Sarti (2006), and J. Petitot Petitot (2003). Such a spherical extension is again

motivated by the fact that the retina is not flat. By the same argument, cuspless

sub-Riemannian geodesics on SO(3) could provide a model of association fields in

the psychology of vision (see Duits et al. (2013a)). Here, we will not focus on the

neurophysiological aspect, but instead refer the interested reader to (Mashtakov et al.,

2016, App. F) for more details.

Figure 9.2: Left: Problem Pcurve(S2): for given boundary conditions on a 2D sphere

(both positions and velocities), we aim to find a curve minimizing the functional com-

promising length and geodesic curvature. In the optimization functional we also include

an external cost induced by spherical image data. Right: Problem Pcurve(R2) Boscain

et al. (2014); Duits et al. (2013a): for given boundary conditions on a 2D plane, to

find a curve minimizing the compromise between length and curvature. The external

cost factor is added for adaptation to flat image data (see Bekkers et al. (2015c)).

The third motivation for this study is that in geometric control theory optimal

synthesis for the sub-Riemannian problem on SO(3) has not been achieved in the

general case (not even for the case of uniform cost C = 1), despite many strong efforts

in this direction Berestovskii (2016, 1994); Beschastnyi & Sachkov (2014); Bonnard

& Chyba (2014); Bonnard et al. (2014); Boscain & Rossi (2008); Calin et al. (2008);
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Chang et al. (2009). In this chapter we will not provide optimal synthesis analytically,

but instead we do provide a Hamilton-Jacobi-Bellman theory for computing globally

optimal (data-driven) geodesics. In the previous chapter we achieved this for sub-

Riemannian geodesics on SE(2), which were used for tracking of blood vessels in flat

2D images.

In view of these three motivations, and to derive explicit and numeric solutions, we

lift the problem Pcurve on the set S2 to a sub-Riemannian problem Pmec on the group

SO(3). This allows us to describe the end points of SO(3) reachable by geodesics with

a cuspless spherical projection. Furthermore we present a Hamilton-Jacobi-Bellman

PDE theory, that allows us to numerically compute the sub-Riemannian distance map,

from which a steepest descent backtracking (via the Pontryagin maximum principle)

provides only the globally optimal geodesics for general external cost and general ξ > 0.

We verify our numerical solution, by comparison with exact geodesics in the case C = 1.

Finally we use these results in a vessel tracking algorithm in spherical images of the

retina, without central projection distortion.

9.1.1 Chapter Outline

In Sec. 9.2 we will first go through the required prerequisites which detail the coordinate

system and mapping from (flat) camera coordinates to the spherical object coordinates

(Subsec. 9.2.1) and the group structure of the Lie group SO(3) (Subsec. 9.2.2). Then

in Sec. 9.3 we formally state the problem which we are solving in this chapter. Here we

make a distinction between the related problems Pcurve (Subsec. 9.3.1: the curve op-

timization problem on the sphere) and Pmec (Subsec. 9.3.2: the curve optimization on

the group SO(3)). Then, based on the notion of parallel momentum of geodesics with

respect to the left Cartan connection (recall Subsec. 4.5.4), we derive analytic solutions

for non-data-adaptive sub-Riemannian geodesics on SO(3) in Sec. 9.4. These solu-

tions will provide the benchmark reference to which we compare the sub-Riemannian

geodesics and distance volumes, which are computed via our numerical approach which

we describe in Sec. 9.5. In Sec. 9.6 we compare results of our numerical method for

computing sub-Riemannian geodesics in SO(3) with exact solutions and also compare

to the results of the SE(2) model which is described in Ch. 8. This chapter is concluded

with Sec. 9.7.
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9.2 Prerequisites

9.2.1 Spherical Images

In this subsection we discuss the relevance of considering spherical images of the retina

rather than flat images, which are commonly used in the medical application (see

Fig. 9.1). We show that distortion appears inevitably on flat images, with a significant

relative error (up to 7%) in length measures. Even larger relative errors (over 20%)

appear in the application of differential operators (used for vessel detection).

We base our computations on the reduced schematic eye model (see Fig. 9.3), which

is commonly used in clinical ophthalmology (see e.g. American Academy of Ophthal-

mology (2015)). Let R be the radius of an eyeball, a be the distance from the nodal

point N to the center C, and ψ be the angle between visual axis and a light ray passing

through N . Here we consider a simplified model, where the optical axis (the best ap-

proximation of a line passing through the optical center of the cornea, lens, and fovea)

coincides with the visual axis (the line connecting fixation point and the fovea)1. The

average radius of a human eye is R ≈ 10.5mm, and the maximum distance between

nodal point N and the central point C is amax = 17mm− 10.5mm = 6.5mm.

Figure 9.3: Left: Schematic eye (original illustration by C.H. Wooley American

Academy of Ophthalmology (2015)) and central projection of images onto the retina.

Here R ≈ 10.5mm is a radius of an eyeball, ψ is an angle between visual axis and light

ray, and ȳ is an angle between visual axis and radius vector ending at the point where

light ray hits the retina.

Right: Schematic eye, enlarged to support Eq. (9.1)

1There is small difference between these two axes (c.f. Fig.33 American Academy of Oph-

thalmology (2015)) which we neglect in our basic model.
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Now we switch to mathematical object coordinates of the retina where we use the

eyeball radius to express lengths, i.e. we have R = 1 and amax = 6.5mm
10.5mmR = 13

21 in

dimensionless coordinates.

In order to compute the maximum absolute angle ȳmax let us express the angle

|ȳ| with respect to center of the eyeball (see right Fig. 9.3). Expressing the squared

distance of segment NQ yields

(a+R cos |ȳ|)2 cos−2 ψ = (a+R cos |ȳ|)2 +R2 sin2 |ȳ|.

Solving this equation with respect to cos |ȳ| we obtain unique nonnegative solution:

|ȳ(a,R, ψ)| = arccos

(
cosψ

√
1− a2 sin2 ψ

R2 − a sin2 ψ
R

)
. (9.1)

A standard fundus camera used for producing of the retinal images has the angular

range ψ ∈ [−π
8 ,

π
8 ]. Thus, substitution R = 1, a = 13

21 and ψ = π
8 in Eq. (9.1) gives the

maximum angle

ȳmax ≈ 0.63rad ≈ 36◦. (9.2)

We rely on the following parametrization of the image sphere S2 and the retinal

sphere S̄2 (see Fig. 9.4):

S2 3 n(x, y) = (cosx cos y, cosx sin y, sinx)T ,

S̄2 3 (−2a, 0, 0)T − (cos x̄ cos ȳ, cos x̄ sin ȳ, sin x̄)T ,

with x, x̄ ∈ [−π
2 ,

π
2 ] and y, ȳ ∈ [−π, π].

Next we present the explicit relation between the object coordinates (x̄, ȳ) — spher-

ical coordinates on a unit sphere S̄2 representing the surface of the eyeball; flat photo

coordinates (X,Y ) — Cartesian coordinates on the image plane; and the spherical

coordinates (x, y) on the image sphere. See Fig. 9.1 and Fig. 9.4.

To take into account the distance from the eyeball to the camera in our model

we introduce a parameter η > 0. In Fig. 9.4, by setting η = 1 we fix the distance

equal to (a + c) radiuses of the eyeball. This corresponds to the case when the image

sphere S2 is obtained by reflection of the physical retinal sphere S̄2 through the point

(−a, 0, 0)T ∈ R3. In this case we have

(x, y) = (x̄, ȳ), (9.3)

and we will always rely on this identification in the sequel. The general case η > 0 can

be taken into account by congruency and scaling X 7→ ηRX, Y 7→ ηRY .
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Figure 9.4: Spherical object coordinates (x̄, ȳ) on a retina, Cartesian camera coordi-

nates (X,Y ) on a flat image of the retina, and spherical camera coordinates (x, y) on

a spherical image of the retina.

The central projection Π (cf. Fig. 9.1) from (x, y) to (X,Y ) including the scaling

factor η > 0 (with physical dimension length in units of R) is given by

X =
(a+ c) sinx

a+ cosx cos y
η, Y =

(a+ c) cosx sin y

a+ cosx cos y
η. (9.4)

Remark 17. In practice, the objective lens of a fundus cameras is typically at a distance

of 0.5cm to 1.5cm away from the cornea, in which a reasonable range for η is 0.5 ≤
η ≤ 1.5.

The inverse mapping Π−1 from (X,Y ) to (x, y) for η = 1 is given by

x = arcsin(Xp̄(X,Y )),

y = arg(p1(X,Y ) + ı Y p̄(X,Y )),
(9.5)
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where

p̄(X,Y ) =
a(a+ c) + Ξa,c(X,Y )

(X2 + Y 2) + (a+ c)2
,

p1(X,Y ) =
(a+ c)Ξa,c(X,Y )− a(X2 + Y 2)

(X2 + Y 2) + (a+ c)2
,

with Ξa,c(X,Y ) =
√

(X2 + Y 2)(1− a2) + (a+ c)2.

In these formulas we need to substitute a = amax = 13
21 and c = 4

5 < R = 1, depicted

in Fig. 9.4, where we work in dimensionless coordinates.

Quantification of local and global deformation

The local deformation from spherical coordinates (x, y) to planar photo coordinates

(X,Y ) is now given by the Jacobian

J(x, y) = det

(
∂X
∂x (x, y) ∂X

∂y (x, y)
∂Y
∂x (x, y) ∂Y

∂y (x, y)

)
=

(a+ c)2 cosx(1 + a cosx cos y)

(a+ cosx cos y)3
η2.

In mathematical analysis we can set η = 1, however in experiments η is to be taken

into consideration. Note that for η = 1 we have

0.77 ≈ J(0, 0) ≤ J(x, y) ≤ J(ymax, ymax) ≈ 1.1,

showing that local deformation plays a role and varies considerably in (x, y).

Next we consider the global distortion along the line x = 0. It is defined as GD(y) =
|y−Y (0,y)|
|y| , and it has a maximum when y = ymax. We have

0 ≤ GD(y) ≤ GD(ymax) ≈ 0.07,

and we see the distortion up to 7% along the line x = 0. The same holds along the line

y = 0.

We conclude that it makes a considerable difference to study Pcurve(S2) or Pcurve(R2)

in the retinal imaging application. In the sequel we will write Pcurve instead of

Pcurve(S2) as we will always be concerned with the case where the base manifold

equals S2.
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9.2.2 The Lie Group SO(3)

The Lie group SO(3) is the group of all rotations about the origin in R3. We shall

denote a counter-clockwise rotation around axis a ∈ S2 with angle φ via Ra,φ. In

particular for rotations around standard axes

e1 = (1, 0, 0)T, e2 = (0, 1, 0)T, e3 = (0, 0, 1)T .

We use representation of SO(3) by 3× 3 matrices

R(x, y, θ) = Re3,yRe2,−xRe1,θ =

 cx cy −sx cy sθ − sy cθ sy sθ − sx cy cθ
cx sy cy sθ − sx sy sθ −cy sθ − sx sy cθ
sx cx sθ cx cθ

 , (9.6)

where we denote cx = cosx, cy = cos y, cθ = cos θ, sx = sinx, sy = sin y, sθ = sin θ,

and where

(x, y, θ) ∈ [−π
2
,
π

2
]× R/{2πZ} × R/{2πZ}. (9.7)

The Lie group SO(3) defines an associated Lie algebra

so(3) = TId(SO(3)) = span(A1, A2, A3),

A1 =

 0 0 0

0 0 −1

0 1 0

 , A2 =

 0 0 1

0 0 0

−1 0 0

 , A3 =

 0 −1 0

1 0 0

0 0 0

 ,

where TId(SO(3)) denotes the tangent space at the unity element.

The nonzero Lie brackets are given by

[A1, A2] = A3, [A1, A3] = −A2, [A2, A3] = A1. (9.8)

There is a natural isomorphism between so(3) and Lie algebra L of left-invariant vector

fields on SO(3), where commutators of vector fields in L correspond to the matrix

commutators in so(3)

[RA,RB] = R[A,B], A,B ∈ so(3), R ∈ SO(3). (9.9)

We express L in matrix form as

L = span(X1,X2,X3),


X1(x, y, θ) = −R(x, y, θ)A2,

X2(x, y, θ) = R(x, y, θ)A1,

X3(x, y, θ) = R(x, y, θ)A3,

(9.10)
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We also use the isomorphism between so(3) and R3

Ai ∼ ei, RAiR
−1 ∼ Rei, (9.11)

where Ai ∈ so(3), R ∈ SO(3), ei ∈ R3, i = 1, 2, 3.

Finally, note that (9.6) is a product of matrix exponentials:

R(x, y, θ) = exp(yA3) exp(−xA2) exp(θA1). (9.12)

We choose to rely on this parametrization to keep the analogy with previous SE(2)

models, such as the one in Ch. 8 and Duits et al. (2013a); Sachkov (2011).

9.3 The Problems Pcurve on S2 and Pmec on SO(3)

9.3.1 Statement of the Problem Pcurve

Let S2 = {n ∈ R3
∣∣ ‖n‖ = 1} be a sphere of unit radius. We consider the problem

Pcurve (see Fig. 9.2), which is for given boundary points n0,n1 ∈ S2 and directions

n′0 ∈ Tn0(S2), n′1 ∈ Tn1(S2), ‖n′0‖ = ‖n′1‖ = 1 to find a smooth curve n(·) : [0, l]→ S2

that satisfies the boundary conditions

n(0) = n0, n(l) = n1, n′(0) = n′0, n′(l) = n′1, (9.13)

and for given ξ > 0 minimizes the functional

L(n(·)) :=

∫ l

0
C(n(s))

√
ξ2 + k2

g(s) ds, (9.14)

where kg(s) denotes the geodesic curvature on S2 of n(·) evaluated in time s, and

C : S2 → [δ,+∞), δ > 0, is an analytic function that we call ”external cost”.

Here the total length l is free and s =
∫ s

0 1 dσ =
∫ s

0 ‖n
′(σ)‖dσ denotes the spherical

arclength. Thus, we have ‖n′(s)‖ = 1 and the Gauss-Bonnet formula

kg(s) = n′′(s) · (n(s)× n′(s)). (9.15)

9.3.2 Statement of the Problem Pmec on SO(3)

We call Pmec the following sub-Riemannian problem on SO(3):

Ṙ = −u1RA2 + u2RA1, (9.16)

R(0) = Id, R(T ) = Rfin, (9.17)

L(R(·)) :=
T∫
0

C(R(t))
√
ξ2u2

1(t) + u2
2(t) dt→ min, (9.18)

R ∈ SO(3), (u1(t), u2(t)) ∈ R2, ξ > 0, (9.19)
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with T > 0 free.

The external cost C : SO(3) → [δ,+∞), δ > 0, is an analytic function that is

typically obtained by lifting the external cost C from the sphere S2 to the group SO(3),

i.e. C(R) = C(R e1).

We study the problem Pmec for C = 1 (case of uniform external cost) in Section 9.4,

but let us first consider some preliminaries.

Remark 18. In problem Pmec we only have 2 velocity controls u1 and u2 in a 3D

tangent space TR(t)(SO(3)).

Remark 19. Sub-Riemannian manifolds are commonly defined by a triplet (M,∆,Gξ,C0 ),

with manifold M, distribution ∆ ⊂ T (M) and metric tensor Gξ,C0 . In our case

M = SO(3), ∆ = span{RA1, RA2},

Gξ,C0 (Ṙ, Ṙ) = C2(·)
(
ξ2u2

1 + u2
2

)
,

(9.20)

where the controls u1 and u2 are components of the velocity vector w.r.t. the moving

frame of reference, see (9.16).

Remark 20. In analogy with the sub-Riemannian problem Pmec in SE(2), cf. Boscain

et al. (2014); Duits et al. (2013a), we sometimes call X1 = −RA2 the “spatial gen-

erator” and X2 = RA1 the “angular generator”, despite the fact that X1 and X2 are

both angular generators on S2. The problem Pmec(SO(3)) can be seen as a model of

the Reeds-Shepp car on a sphere. The Reeds-Shepp car can move forward and backward

and rotate on a place. The control u1 controls the motion along X1, and the control u2

controls the motion along X2. See Fig. 9.5.

9.3.3 Relation Between the Problems Pcurve and Pmec

We call a spherical projection the following projection map from SO(3) onto S2 (see

Fig. 9.6)

SO(3) 3 R 7→ R e1 ∈ S2. (9.21)

In coordinates (x, y, θ) defined by (9.6) we have

R(x, y, θ) e1 =

 cosx cos y

cosx sin y

sinx

 = n(x, y) ∈ S2. (9.22)

So we see, that (x, y) are spherical coordinates on S2.
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Figure 9.5: The controls u1 and u2 along the “spatial generator” X1 and the “angular

generator” X2 (cf. Remark 20).

We can observe that in Pcurve one is interested in a curve n(s) = R(t(s)) e1, which

satisfies (9.13) and minimizes (9.14). Here R(t) = R(x(t), y(t), θ(t)), and

t(s) =

∫ s

0
C(n(σ))

√
ξ2 + k2

g(σ)dσ. (9.23)

Next we show that the spherical projection (9.21) of certain minimizers of Pmec

provides the solution of problem Pcurve. More precisely this holds for the minimizers

whose spherical projection does not have a cusp.

Definition 1. The spherical projection of a minimizer of Pmec is said to have a cusp

at t = tncusp if there exists ε > 0, s.t. u1(a)u1(b) < 0 for all a ∈ (tncusp − ε, tncusp) and

b ∈ (tncusp, t
n
cusp + ε). I.e. if the control in front of the “spatial” generator X1 switches

sign locally. We are interested in the first cusp time tcusp = min
n∈N
{tncusp > 0}, and we

call smax the corresponding value of spherical arclength, s.t. tcusp = t(smax) via (9.23).

Notice that if u1 ≡ 0 then the trajectory of Pmec is projected at a single point on

S2 which does not provide a solution to Pcurve. This allows us to define smax as

smax = min{s > 0
∣∣u1(t(s)) = 0}, (9.24)

so that tcusp = t(smax).
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Figure 9.6: Illustration of the parametrizations used in Pmec and Pcurve. The ro-

tations are parameterized by (9.12), i.e. by angles x, y and θ of rotation about basis

axes, see (9.7).

The following theorem states that minimizers n(s) of Pcurve for s ∈ [0, smax) are

given by spherical projection of the minimizers R(t) of Pmec for t ∈ [0, tcusp].

Theorem 4. Let R(t), t ∈ [0, T ] be a minimizer of Pmec whose spherical projection

does not exhibit a cusp (i.e. T < tcusp). Set
R(T ) e1 = n1 = Rfin e1,

R(T ) e3 = n′1 = Rfin e3,

n0 = e1, n′0 = e3.

(9.25)

Then for such boundary conditions Pcurve is well-posed and along such minimizers we

have

n(s) = R(t(s)) e1,

u1 = ds
dt ,

u2 = −kg dsdt ,
(9.26)

with t(s) =
∫ s

0 C(n(σ))
√
ξ2 + k2

g(σ) dσ, for 0 ≤ s ≤ l < smax, and T = t(l). The limit

lim
s↑smax

t(s) = t(smax) is well-defined, despite the fact that lim
s↑smax

kg(s) =∞.

Proof See (Mashtakov et al., 2016, App. A). �
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9.4 Analytic Formulas Obtained via the Left-

Cartan Connection

Geodesics can be obtained as Hamiltonian flows ((Jost, 2011, Ch. 2.2)), in which the

geodesics are integral curves of a Hamiltonian vector field defined on the cotangent

bundle T ∗(SO(3)). Such geodesics have a vertical part (the adjoint variables) and a

horizontal part (the state variables). The sub-Riemannian geodesics are obtained as

the horizontal part of the solutions to the Hamiltonian system of ordinary differential

equations (ODEs). Such an approach is also used in the SE(2) case in Ch. 8, App. C.1

and Agrachev & Sachkov (2013).

In Mashtakov et al. (2016), the Hamiltonian system is obtained via Pontryagin’s

maximum principle. In this section we follow an alternative route to obtain the Hamil-

tonian system in which we rely on the left Cartan connection on the cotangent bundle.

Our starting point is that sub-Riemannian geodesics have parallel momentum with

respect to the (dual) left Cartan connection (see Thm. 1 on page 92).

Once the Hamiltonian system is defined, the sub-Riemannian geodesics are ob-

tained as its solutions. In Mashtakov et al. (2016) exact solutions are obtained for the

C = 1 case (no data-adaptivity). These exact solutions are later used in Sec. 9.6 for

the validation of our numerical method for computing data-adaptive sub-Riemannian

geodesics (Sec. 9.5).

9.4.1 Cartan Connection

The sub-Riemannian left Cartan connection on SO(3) has the same form as the left

Cartan connection on SE(2) (see Subsec. 4.5.3) and is in local coordinates defined as

∇SO(3)
γ̇ Y :=

2∑
k=1

ẏk − 2∑
i,j=1

ckij γ̇
iyj

Xk, (9.27)

with vector field Y |γ =
∑3

i=1 y
i(γ) Xi|γ , with ẏk

∣∣
γ

= d
dt ω

k
∣∣
γ(t)

(Y |γ(t)) the derivative

of each component yk along the curve γ, with basis
{
ωi
}3

i=1
dual to {Xi}3i=1 defined

by 〈ωi, Xj〉 = δij , and with the non-zero structure constants ckij (see also commutators

in (9.8)) given by

c3
1,2 = −c3

2,1 = 1, c2
1,3 = −c2

3,1 = −1, c12,3 = −c2
3,2 = 1. (9.28)
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The connection on the cotangent bundle is given by

∇∗,SO(3)
γ̇ λ =

3∑
i=1

λ̇i +
2∑
j=1

3∑
k=1

ckijλkγ̇
j

ωi, (9.29)

with λ̇i(t) = d
dt〈λ|γ(t) , Xi|γ(t)〉.

9.4.2 Parallel Momentum

Now, (sub-Riemannian) geodesics have parallel momentum with respect to the left

Cartan connection, and they satisfy the following set of equations

∇∗,SO(3)
γ̇ λ = 0 (9.30a)

Gξ0 γ̇ = P∗∆λ, (9.30b)

with the sub-Riemannian metric tensor on SO(3) for C = 1 given by

Gξ0
∣∣∣
γ(t)

(γ̇(t), γ̇(t)) =
2∑

i,j=1

giju
iuj = ξ2|u1(t)|2 + |u2(t)|2, (9.31)

with

γ̇(t) =

 ẋ(t)

ẏ(t)

θ̇(t)

 = u1(t) X1|γ(t) + u2 X2|γ(t) , (9.32)

with

X1|γ(t) =

 cos θ

− secx sin θ

tanx sin θ

 , X2|γ(t) =

 0

0

1

 . (9.33)

As we will see, (9.30a) provides us the vertical part and (9.30b) the horizontal part of

the Hamiltonian system.

9.4.3 The Hamiltonian System in Sub-Riemannian Arc-

Length Parameterization

From the set of equations in (9.30) we can derive the following Hamiltonian system of

ODEs: 
λ̇1 = −λ2λ3,

λ̇2 = 1
ξ2
λ1λ3,

λ̇3 =
(

1− 1
ξ2

)
λ1λ2


ẋ = λ1

ξ2
cos θ,

ẏ = −λ1
ξ2

secx sin θ,

θ̇ = λ1
ξ2

sin θ tanx+ λ2

— vertical part, — horizontal part,

(9.34)
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with the boundary conditions

λ1(0) = λ0
1, λ2(0) = λ0

2, λ3(0) = λ0
3,

x(0) = 0, y(0) = 0, θ(0) = 0.
(9.35)

The horizontal part of the Hamiltonian system (expressed in our coordinate chart

(9.12)) follows directly by substituting

uk = ξ−2
k λk, with ξ1 = ξ, ξ2 = 1, (9.36)

which we obtained from (9.30b), into (9.32). By substituting (9.36) into (9.29) we

obtain the following:

3∑
i=1

λ̇i +
2∑
j=1

3∑
k=1

ckijλkξ
−2
j λj

ωi = 0

↔

λ̇i = −
2∑
j=1

3∑
k=1

ckijξ
−2
j λkλj . (9.37)

This (together with the structure constants given in (9.28)) gives us then the vertical

part of the Hamiltonian system.

9.4.4 Exact Solutions

The Hamiltonian system (9.34) in sub-Riemannian arclength parametrization (i.e.,

Gξ0(γ̇, γ̇) = 1) is solved in Mashtakov et al. (2016). There exact solutions are pro-

vided, and these curves are the minimizers of Pmec(SO(3)) (Subsec. 9.3.2). In Thm. 6

of Mashtakov et al. (2016) exact solutions are provided as well for sub-Riemannian

geodesics in SO(3) that do not contain cusps. We provide these solutions below.

Such cuspless geodesics can be parametrized in spherical arc-length parametrization

(|u1(t)|2 = 1), and their projections to S2 are solutions to the problem Pcurve(S2)

(Subsec. 9.3.1). In spherical arc-length parametrization the Hamiltonian system in

(9.34) becomes
λ1(s) = ξ2 ds

dt ≥ 0,

λ′2(s) = λ3(s),

λ′3(s) = (ξ2 − 1)λ2(s),


x′(s) = cos θ(s),

y′(s) = − secx(s) sin θ(s),

θ′(s) = sin θ(s) tanx(s) + ξλ2(s)/
√

1− λ2
2(s),

— vertical part, — horizontal part,

(9.38)
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in which we write λi(s) := λi(t(s)) and λ′i(s) = d
dsλi. Although still quite technical,

the solution to the system (9.38) in s-parametrization is considerably simpler than the

solution of (9.34) in t-parametrization (Mashtakov et al., 2016, Thm. 2). Full details

are provided in Mashtakov et al. (2016), here we only provide the main results in the

following theorems.

Theorem 5. A solution of the vertical part in (9.38) for all ξ 6= 1 reads as
λ2(s) = λ0

2 cosh sχ+
λ03
χ sinh sχ,

λ3(s) = λ0
3 cosh sχ+ χλ0

2 sinh sχ,

λ1(s) = ξ
√

1− λ2
2(s),

(9.39)

with χ ∈ C given by

χ =
√
ξ2 − 1 =


√

1− ξ2 ı, for 0 < ξ < 1,√
ξ2 − 1, for ξ ≥ 1,

(9.40)

and for the case ξ = 1 we find straight lines parallel to the λ2 axis in the (λ2, λ3)-phase

portrait: 
λ2(s) = λ0

2 + λ0
3 s,

λ3(s) = λ0
3,

λ1(s) =
√

1− λ2
2(s).

(9.41)

Theorem 6. The unique solution of (9.38) is defined for s ∈ [0, smax(λ(0)), where

smax(λ(0)) is given by (9.43), defined in Thm. 7 below. The solution to the vertical

part is given by Theorem 5 and the solution to the horizontal part is given by

x(s) = arg(
√
R2

11(s) +R2
21(s) + ıR31(s)),

y(s) = arg(R11(s) + ıR21(s)),

θ(s) = arg(R33(s) + ıR32(s)),

(9.42)

where

R(s)=

 R11(s) R12(s) R13(s)

R21(s) R22(s) R23(s)

R31(s) R32(s) R33(s)

=DT
0 eỹ(s)A3 e−x̃(s)A2 eθ̃(s)A1 ,

D0 = 1
M


µ

ξλ02
√

1−(λ02)2

µ −λ02λ
0
3

µ

0
Mλ03
µ

ξM
√

1−(λ02)2

µ

λ0
2 −ξ

√
1− (λ0

2)2 λ0
3

 , and
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x̃(s) = arg

(√
M2 − λ2

2(s) + ıλ2(s)

)
,

ỹ(s) = ξM2

 s∫
0

√
1− λ2

2(σ)

M2 − λ2
2(σ)

dσ

 ,

θ̃(s) = arg

(
λ3(s)− ıξ

√
1− λ2

2(s)

)
,

with µ =
√
M2 − (λ0

2)2,M =
√
ξ2(1− (λ0

2)2) + (λ0
2)2 + (λ0

3)2.

Theorem 7. When moving along a sub-Riemannian geodesic t 7→ γ(t) the first cusp

time is computed as tcusp(λ(0)) = t(smax(λ(0)), recall (9.23), where

smax(λ(0))=


sgn(λ03)−λ02

λ03
for χ = 0, λ0

3 6= 0,

1
χ log

(
s1(
√
κ+χ)

λ02χ+λ03

)
for χ 6= 0, κ ≥ 0, λ0

2χ+ λ0
3 6= 0,

+∞ otherwise,

(9.43)

with s1 = sgn
(
<
(
λ0

2χ+ λ0
3

))
and κ = (λ0

3)2 +
(
1− (λ0

2)2
)
χ2 ∈ R.

As a result we see that (in contrast to the SE(2) case, where cuspless sub-Riemannian

geodesics are always optimal), in the sub-Riemannian manifold (SO(3),∆,Gξ0) there do

exist nonoptimal cuspless geodesics.

9.4.5 Alternative Derivation of the Analytic Solution via

the Left Cartan Connection

In Mashtakov et al. (2016) we derived the exact solutions via the Pontryagin Maximum

principle. Here we provide a short derivation via our fundamental tool: the left-Cartan

connection (recall Thm. 1). In matrix vector notation we can write (9.30a) as follows

∇∗,SO(3)
γ λ = 0 ⇒ dλ− λR(γ)−1dR(γ) = 0, (9.44)

with row vector λ = (λ1, λ2, λ3), with matrix representation R(γ(t)) of the group

elements γ(t) ∈ SO(3), and with R(γ)−1dR(γ) the Cartan matrix. Consider now the

following relation (obtained using the chain-rule and inverse matrix differentiation):

d(λR(γ)−1) = dλR(γ)−1 − λR(γ)−1dR(γ)R(γ)−1

d(λR(γ)−1)R(γ) = dλ− λR(γ)−1dR(γ),
(9.45)

which allows us to rewrite (9.44) as follows

d(λR(γ)−1) = 0. (9.46)
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This gives us the following relation

λ(s)R(γ(s))−1 = λ(0)R(γ(0)), (γ(0) = e,R(e) = I)

λ(s)R(γ(s))−1 = λ(0), (9.47)

λ(s) = λ(0)R(γ(s)). (9.48)

This relation allows us to compute (9.42) in Thm. 5 directly from (9.39), because it

directly relates momentum curves (in phase space) to geodesics in the group.

9.5 PDE Approach for Data-Driven Sub-Riemannian

Geodesics on SO(3)

In this section we adapt the PDE approach for data-driven sub-Riemannian geodesics

in SE(2) (cf. Ch. 8) to the SO(3) group. Here we consider the basis left-invariant

vector fields Xi as differential operators of the first order, and we write Xi(W) for

the derivative of a function W : SO(3) → R along Xi. We aim to solve the following

geometric control problem

γ̇(t) =
2∑
i=1

uiXi|γ(t), for t ∈ [0, T ],

γ(t) ∈ SO(3), γ(0) = e, γ(T ) = g1, (u1, u2) ∈ R2,

l(γ(·)) =
∫ T

0 C(γ(t))
√
ξ2u2

1(t) + u2
2(t) dt→ min,

Here the terminal time T is free; and C : SO(3)→ [δ, 1], δ > 0 is an analytic function

that we call “external cost”.

The following theorem summarizes our approach for the computation of data-driven

sub-Riemannian length minimizers on SO(3).

Theorem 8. Let W(g) be a viscosity solution of the following boundary value problem:{ √
(X1|g(W))2

ξ2
+ (X2|g(W))2 = C(g), for g 6= e,

W(e) = 0.
(9.49)

Then the isosurfaces St ={g∈SO(3) |W(g) = t} are sub-Riemannian spheres of radius

t centered at e.

A sub-Riemannian length minimizer γ(t) = γb(W(g1) − t) ending at g1 is found by

backward integration for t ∈ [0,W(g1)] γ̇b(t) = −u1(t) X1|γb(t) − u2(t) X2|γb(t) ,

γb(0) = g1,
(9.50)
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where u1(t) =
X1|γb(t)(W)

(ξ C(γb(t)))2
and u2(t) =

X2|γb(t)(W)

(C(γb(t)))2
.

Proof See (Mashtakov et al., 2016, App. D). �

9.5.1 Sub-Riemannian Fast Marching in SO(3)

Here we propose a method SR-FM (sub-Riemannian Fast Marching) for the compu-

tation of data driven sub-Riemannian length minimizers (not necessarily cuspless) on

SO(3) group, as a solution to the sub-Riemannian eikonal system (9.49). This method

was successfully used in Ch. 8 for the computation of data-driven sub-Riemannian

length minimizers on SE(2) group. The method is based on a Riemannian approxi-

mation of sub-Riemannian manifold, and computing Riemannian geodesics in highly

anisotropic space, which becomes the sub-Riemannian manifold in the limiting case as

anisotropy tends to infinity.

Here we follow the explanation in Sec. 8.7.3, where we work now in new settings

of the SO(3) group and use the coordinate chart (x, y, θ) given by (9.6). Recall, that

the basis left invariant vector fields Xi on SO(3) are given by the following differential

operators:

X1 = cos θ ∂x − secx sin θ ∂y + tanx sin θ ∂θ,

X2 = ∂θ,

X3 = sin θ ∂x + secx cos θ ∂y − tanx cos θ ∂θ,

and corresponding basis left-invariant one forms ωi, satisfying 〈ωi, Xj〉 = δji , are ex-

pressed as

ω1 = cos θ dx− cosx sin θ dy,

ω2 = sinx dy + dθ,

ω3 = sin θ dx+ cosx cos θ dy.

(9.51)

The sub-Riemannian metric tensor

Gξ,C0 = C2(·)
(
ξ2ω1 ⊗ ω1 + ω2 ⊗ ω2

)
is defined only on the distribution ∆, recall Remark 19, but can be seen as a limiting

case (when ε tends to zero) of the Riemannian metric tensor

Gεξ,C = C2(·)
(
ξ2ω1 ⊗ ω1 + ω2 ⊗ ω2 + ξ2ε−2ω3 ⊗ ω3

)
. (9.52)

However we stress that this limit does not exist in (9.52), since the term ξ2ε−2ω3 ⊗ ω3

tends to infinity. This corresponds to a penalty of infinite cost when moving in the
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direction X3 orthogonal to the distribution ∆. Nevertheless, one can approximate the

sub-Riemannian manifold by Riemannian by fixing some finite small ε > 0. Moreover

the sub-Riemannian eikonal equation (9.49) is well-defined and it can be derived as a

limiting case of the eikonal equation on a Riemannian manifold via the inverse metric

tensor Gξ,C0

−1
= lim

ε→∞
Gξ,Cε

−1
(a well-defined limit).

From the above derivations we see that the fast-marching approach for computing

sub-Riemannian geodesics on SE(2) is easily generalized to the SO(3)-case. To this end

we replace the matrix-representation for Gξ,Cε expressed in the fixed (x, y, θ) Cartesian

coordinate frame. In the SO(3)-case it equals

Mε = R

 C2(·) ξ2 0 0

0 C2(·) 0

0 0 C2(·) ξ2 ε2

RT ,

with

R =

 cos θ 0 sin θ

− cosx sin θ sinx cosx cos θ

0 1 0


Here the diagonal matrix in the middle encodes the anisotropy between theXi directions

while the matrix R is the basis transformation from the moving coframe {ω1, ω2, ω3}
to the fixed coframe {dx, dy, dθ}, recall (9.51), in which the Fast Marching implemen-

tation via special anisotropic stencils Mirebeau (2014) is used.

In Section 9.6.1 we will show that the thereby obtained fast-marching approach

already presents reasonable precision for ε = 0.1. Experiments in Section 9.6.3 show

the application of the method (with data-adaptive non-uniform cost) to tracking of

blood vessels in retinal images.

9.6 Experiments

In Subsection 9.6.1 we verify the sub-Riemannian Fast Marching method (SR-FM) by

comparison of sub-Riemannian length minimizers obtained via SR-FM with the exact

sub-Riemannian geodesics (cf. Section 9.4) for the case of uniform external cost (i.e.

C = 1). In Subsection 9.6.2 we compare sub-Riemannian geodesics in the groups

SE(2) and SO(3) for the uniform external cost case. In Subsection 9.6.3 we provide

experiments of vessel tracking by sub-Riemannian geodesics on SO(3) when the external

cost C is induced by spherical data, and compare them to the result of vessel tracking

on the corresponding flat image by sub-Riemannian geodesics on SE(2).
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9.6 Experiments

9.6.1 Verification of the Fast Marching Method in the

Case of Uniform External Cost

In this subsection we perform the experiments to validate the sub-Riemannian Fast

Marching method proposed in Subsection 9.5.1. The goal of the experiments is to check

that the method produces an accurate approximate solution to the sub-Riemannian

problem in SO(3) group in the case of uniform external cost C = 1. In all the experi-

ments we fixed the anisotropy parameter of the Riemannian approximation as ε = 0.1.

In the first experiment we compare the geodesics γFM (·) obtained via SR-FM with

the exact cuspless geodesics γ(·) computed via analytic formulas in Theorem 6. We

perform the comparison as follows:

1. Fix ξ > 0 and the initial momenta λ(0).

2. Compute the first cusp time smax(λ(0)) corresponding to λ(0), and set send =

min{smax(λ(0)), π2 }.

3. Compute the geodesic γ(s), s ∈ [0, send] via Thm. 6.

4. Compute the distance function W(g) in the domain g = (x, y, θ) ∈ [−π
2 ,

π
2 ] ×

[−π, π]× [−π, π] via SR-FM. Here we compute the distance function in the grid

of 201 × 401 × 401 points and then interpolate it using third order Hermite

interpolation.

5. Compute the geodesic γFM (t), t ∈ [0,W(gend)] via backtracking (9.50) from the

endpoint g1 = γ(send).

6. Plot the spherical projections of γ(s) and γFM (t) and compare them.

A typical result of the comparison is shown in Fig. 9.7, where we put ξ = 1.5,

λ3(0) = 0 for all the curves and varied initial momentum λ2(0) ∈ {−0.99, −0.81,

−0.63, −0.45, −0.27, −0.09, 0.09, 0.27, 0.45, 0.63, 0.81, 0.99}. As a result we see that

the geodesics computed numerically via SR-FM accurately follow the exact geodesics.

We have performed a series of such experiments and always obtained similar results

when the geodesics γi(s) were optimal for s ∈ [0, siend]. It was also remarkable that

SR-FM resulted into different curves (length-minimizers) when the geodesic γi(s) was

not optimal for s ∈ [0, siend]. Such an example is illustrated in Fig. 9.7 (right). The

question of optimality of sub-Riemannian geodesics in SO(3) in the general case ξ > 0

is still an open important problem. Here we provide a numeric SR-FM method for
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Figure 9.7: Left: Comparison of the exact cuspless sub-Riemannian geodesics on

SO(3) (green dashed lines) obtained via analytic formulas (Theorem 6) and the sub-

Riemannian geodesics obtained via numerical Fast Marching method (red lines). Here

the spherical projection of the geodesics is depicted together with the boundary condi-

tions. Right: An example of a nonoptimal cuspless geodesics. It can be observed, that

the exact geodesics and the optimal geodesics computed via SR-FM satisfy the same

boundary conditions, but the red lines are shorter.

computing only the optimal geodesics. In analogy with how it was done in Ch. 8 it is

possible to compute Maxwell sets numerically.

9.6.2 Comparison of Sub-Riemannian Geodesics in SO(3)

and SE(2) for C = 1

In this subsection we again consider the case C = 1 and compare sub-Riemannian

geodesics γSO(3)(·) = (x(·), y(·), θ(·)) and γSE(2)(·) = (X(·), Y (·),Θ(·)) in the image

plane. The SR-FM method is used for computation of the geodesics parameterized

by sub-Riemannian arclength. Here we prepare background for comparison of the

geodesics in retinal images via the schematic eye model, recall Subsec. 9.2.1, where as

a departure point we use an image (white for C = 1) on a plane OXY , recall Fig. 9.4.

See Fig. 9.8, where we compare SE(2) and SO(3) sub-Riemannian geodesics pro-

jected on the plane and on the sphere (via mappings Π and Π−1). For additional details

see (Mashtakov et al., 2016, App. E).
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Figure 9.8: Comparison of an SE(2) sub-Riemannian geodesic (blue) and an SO(3)

sub-Riemannian geodesic (red), from left to right in (x, y) spherical image coordinates,

(X,Y ) flat image coordinates, and plotted on the sphere S2.

9.6.3 Vessel Analysis via Sub-Riemannian Geometry on

SO(3) and SE(2)

As explained in the introduction we need to include the spherical geometry of the retina

rather than the flat geometry of the flat image. This spherical geometry is encoded in

our spherical image model, see Fig. 9.4. Next we will analyze the effect of including

this geometry in the SR-FM vessel tracking method along data-driven sub-Riemannian

geodesics in SO(3).

More precisely we propose vessel tracking in object coordinates (or spherical image

coordinates) via sub-Riemannian geometry in SO(3) as an extension of vessel tracking

in flat images Bekkers et al. (2015b,c) along sub-Riemannian geodesics in SE(2). There-

fore we want to investigate whether including the correct spherical geometry makes a

difference in the vessel tracking in practice. Although a complete detailed comparison

on large data sets is left for future work, we present preliminary experiments which

indeed indicate considerable differences in both tractography and curvature measure-
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ments. These experiments are shown in Fig. 9.9, Fig. 9.10 which we explain next.

We apply the same scheme as in Subsection 9.6.2, but now we compute data-driven

geodesics, where the external cost is induced by image data. For the sake of simple

comparison we restrict ourselves to a cost depending on the spherical coordinates only,

and we set

C(n(x, y)) =

(
1 +
VFrF (Π(x, y))

λ‖VFrF‖2∞

)−1

, (9.53)

where we use the standard 2D multiscale vesselness filter VFr Frangi et al. (1998), with

σ1 = 0.3, σ2 = 0.3‖S‖∞ and scales s = 1
2σ

2 ∈ {2, 3, 4, 5} in terms of pixel sizes, see

Eq. (3.3) and Ch. 6.

In the experiment in Figure 9.9 we show that there is a considerable difference

between SE(2) sub-Riemannian geodesics and SO(3) sub-Riemannian geodesics. We

see that when internal geometry is dominant over the external cost (λ small) the sub-

Riemannian geodesics in SO(3) are more stiff than sub-Riemannian geodesics in SE(2),

and therefore in the boundary value problem they are less eager to take short cuts and

better follow the vessel structure. In case λ is large (external cost is dominant over the

internal geometry) we see only small differences in the overall locations of the SE(2)-

curves and SO(3)-curves. The results are stable w.r.t. choice of 1 ≤ η ≤ 2 (which

controls the distance from the camera to the eye ball, relative to eye ball radius, recall

Fig. 9.4).

In the next experiment we measure the curvature of the curves obtained by vessel

tracking method via SE(2)-geometry and via SO(3) geometry. For this experiment

we used the values ξ = 3, λ = 50 and η = 2. Although in this case the result of

tractography is very similar for the SE(2) and SO(3) curves, we show that there is a

considerable difference in their curvature.

Corollary 1. (from Theorem 4) The geodesic curvature of a spherical projection of

data-driven geodesic γSO(3)(·) satisfies

κSO(3)
g (·) = −ξ2

X2|γSO(3)(·)(WSO(3))

X1|γSO(3)(·)(WSO(3))
.

It can be checked (see Duits et al. (2013a) and Bekkers et al. (2015c)) that the

planar curvature of spatial projection of a sub-Riemannian geodesic in SE(2) satisfies

κSE(2)(·) = −ξ2
A2|γSE(2)(·)(WSE(2))

A1|γSE(2)(·)(WSE(2))
.

Thus the curvature analysis can be simply done based on vessel tracking, and this

shows the benefit of our algorithm. In Figure 9.10 we show an experiment of vessel
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Figure 9.9: Comparison of vessel tracking via γSO(3) sub-Riemannian geodesics on

SO(3) (green solid lines) in object coordinates and via γSE(2) sub-Riemannian geodesics

on SE(2) (red dashed lines) in the planar camera coordinates. Here the planar projec-

tion ΓSO(3) of γSO(3), and spatial projection ΓSE(2) of γSE(2) are depicted in the same

flat image. SO(3)-geodesics are more stiff than SE(2)-geodesics, and in the boundary

value problem they are less eager to take short cuts. If λ is large we see only small

differences in the overall locations of the SE(2)-curves and SO(3)-curves. The results

are stable w.r.t. choice of 1 ≤ η ≤ 2 (distance from the camera to the eye ball, relative

to eye ball radius, cf. Fig. 9.4)
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Figure 9.10: Left: Two curves from the experiment in Fig. 9.9 (right-bottom figure)

are depicted with slight offset. The upper curve is a spatial projection ΓSE(2) of the

data-driven sub-Riemannian geodesic γSE(2) with depicted (in color) planar curvature

κSE(2) on top of the curve. The lower curve ΓSO(3) is the planar projection of the

sub-Riemannian geodesic γSO(3) with depicted geodesic curvature κ
SO(3)
g on top of it.

Right: Three graphs are shown in the same plot: planar curvature κSE(2) of ΓSE(2);

geodesic curvature κ
SO(3)
g of spherical projection of γSO(3); planar curvature κSO(3) of

ΓSO(3). The effect of considering geodesic curvature κ
SO(3)
g in object coordinates on S2

rather than planar curvature κSO(3) in photo coordinates on projection on R2 is visible

(compare the green solid and dashed graphs). A bigger difference comes from using

SO(3) sub-Riemannian geometry than SE(2) sub-Riemannian geometry (compare red

and green graphs).

curvature measurement based on tracking via SO(3)-geometry and via SE(2)-geometry.

For completeness we added also a comparison with a planar curvature κSO(3)(·) of a

planar projection ΓSO(3)(·) := Π(x(·), y(·)) of γSO(3)(·) = (x(·), y(·), θ(·)).
We can see a considerable difference in curvature measurement via SO(3)-geometry

and SE(2)-geometry. It is also seen that that the difference between κSO(3) and κ
SO(3)
g

is not very significant. Thus, both in terms of vessel tracking and curvature analysis

there is a significant difference between using the SE(2) and SO(3) model. In terms of

vessel tracking this difference decreases when the external cost dominates with respect

to the internal geometry in the metric. In particular in the analysis of curvature it

is important to realize that it makes a large difference whether geodesic curvature is

computed on the sphere, or planar curvature is computed on the plane.

9.7 Conclusion

Data-driven sub-Riemannian geodesics on 3D Lie groups are a suitable tool for trac-

tography of blood vessels in retinal imaging. In the previous Ch. 8 on the SE(2)-case

practical advantages have been shown in comparison to the (isotropic) Riemannian case,
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and geodesic methods in the image domain. However, these models included a sub-

Riemannian geometry on SE(2) based on lifts of flat images, which does not match the

actual object-geometry: the retina is spherical rather than planar, cf. Fig. 9.1, Fig. 9.3

and Fig. 9.4.

Therefore, for geometric tracking we propose a frame bundle above S2, cf. Fig. 9.6,

instead of a frame bundle above R2. Geometric tracking of geodesics is done along

globally optimal data-driven sub-Riemannian geodesics in SO(3) (and their spherical

projections) by our new numerical wavefront propagation method. We have validated

our method for the uniform cost case, cf. Fig. 9.7.

Furthermore, we used a specific parametrization of Lie group SO(3) that allowed us

to compare between sub-Riemannian geodesics in SO(3) to sub-Riemannian geodesics

in SE(2). In our comparison we took into account a standard optical model for the

mapping between object coordinates on the retina and camera-coordinates in the ac-

quired planar retinal image. In our experiments, the differences between the SO(3)

case and the SE(2) case are considerable, both for the case of uniform cost, cf. Fig. 9.8,

and for the data-driven case in the retinal image analysis application, cf. Fig. 9.9. In

general we see that for realistic parameter settings (in optics) the SO(3)-geodesics have

a slower variation in curvature, and are less eager to take short-cuts, see e.g. Fig. 9.9

and Fig. 9.10. Furthermore, there are visible differences between geodesic curvature of

data-driven sub-Riemannian geodesics on the sphere and the curvature of their planar

projections. As in retinal imaging applications curvature is considered as a relevant

biomarker for detection of diabetic retinopathy and other systemic diseases (cf. Ch. 1),

the data-driven sub-Riemannian geodesic model on SO(3) is a relevant extension of our

data-driven geodesic model on SE(2). In this chapter, however, we restricted ourselves

to feasibility studies. More extensive comparisons are left for future work.

Finally, we note that the computation time for data-driven sub-Riemannian geodesics

on SO(3) is exactly the same as for the SE(2)-case. Our specific choice of coordinates

of SO(3) allowed us to modify the very efficient fast-marching approach Sanguinetti

et al. (2015), with a simple replacement of the metric tensor matrix, as we have shown

in Subsec. 9.5.1.
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Chapter 10

Artery-Vein Classification

This chapter is based on:

Eppenhof, K., Bekkers, E., Berendschot, T.T., Pluim, J.P., ter Haar Romeny, B.M.: Retinal

artery/vein classifcation via graph cut optimization. In Trucco, E., Chen, X., Garvin,

M.K., Liu, J.J., Frank, X.Y., eds.: Proceedings of the Ophthalmic Medical Image Anal-

ysis Second International Workshop, OMIA 2015, Held in Conjunction with MICCAI

2015, Munchen, Germany, October 9, 2015. Iowa Research Online (2015) 121-128
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10. ARTERY-VEIN CLASSIFICATION

This chapter is based on joint work with Koen Eppenhof, Tos Berendschot, Josien

Pluim, and Bart ter Haar Romeny and is published in Eppenhof et al. (2015). Here, in

particular Koen Eppenhof is gratefully acknowledged for his design and development

of a graph-cut approach to artery-vein labeling of the vessels in the vasculature models

constructed by the method of Ch. 7.

10.1 Introduction

The retinal vasculature can change function or geometry in a variety of ocular and

systemic diseases, including glaucoma, macular degeneration, atherosclerosis, and hy-

pertensive or diabetic retinopathy, see Ch. 1. One of the earliest signs of these diseases

is generalized arteriolar narrowing, in which the calibers of arteries decrease relatively

to the calibers of veins. This phenomenon can be quantified using the ratio of the arte-

riolar and venular diameters, which is summarized in a value called the arteriovenous

ratio (AVR). The AVR is commonly computed from the six arteries and veins with

highest caliber in a zone around the optic disc Knudtson et al. (2003). Automated

methods that measure the AVR directly from a retinal image require localization of the

vessels and classification of vessels into arteries and veins. Additionally, artery/vein

classification of retinal vessels is necessary for other artery/vein specific vessel features,

such as vessel tortuosity.

Most existing automated artery/vein classification methods have focused on classi-

fication of vessels via local intensity-based features Grisan & Ruggeri (2003); Li et al.

(2003); Niemeijer et al. (2011). The difference in appearance of arteries and veins in

white light retinal images is primarily determined by the oxygen-content of the blood,

causing arteries to appear bright red, whereas veins look darker. An additional differ-

ence in intensity is sometimes present in the central light reflex on the vessels caused

by the white flash of the camera. In arteries this reflection is often more pronounced,

and can be used to distinguish them from veins Li et al. (2003); Niemeijer et al. (2011).

Recent methods have also focused on contextual information present in bifurcations

and crossings of vessels. These methods make use of the fact that vessels that join in

a bifurcation must be of the same type, and two crossing vessels must be of opposite

type Dashtbozorg et al. (2014); Joshi et al. (2014); Rothaus et al. (2009).

We propose a novel and generic graph-based method to combine local and con-

textual features of the retinal vasculature for artery/vein classification. In contrast to

previous graph-based methods such as Dashtbozorg et al. (2014); Joshi et al. (2014);

Rothaus et al. (2009), our classification is defined as an optimization problem, based on
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a non-submodular energy function that is minimized exactly and efficiently using the

Quadratic Pseudo-Boolean Optimization (QPBO) graph cut algorithm. Optimization

of this energy generates a classification of all detected vessels based on local features,

while the contextual features limit the number of possible configurations of vessel la-

bels. This results in a flexible approach in which the influence of contextual and local

information can be weighted based on their confidence levels.

10.2 Methods

Models of the retinal vasculature form the basis of our approach. Here, we rely on

models of the vessels around the optic disc, made using the Edge Tracking in Orientation

Scores (ETOS) algorithm presented in Ch. 7, but in principle any model that provides

the edges of vessels and detects their crossings and bifurcations can be used, for example

Al-Diri et al. (2010); Dashtbozorg et al. (2014); Perez et al. (2002). The models are

used to define an energy function (Section 10.2.1) that uses features extracted from

both the image and the model (Section 10.2.2). Optimization of the energy results in

artery/vein labeling of the vessels in the model (Section 10.2.3).

10.2.1 Energy Function Definition

In our artery/vein classification approach we make use of a graph representation of

the vascular network that consists of a set of vertices V and edges E. Each vertex

u ∈ V represents a single blood vessel, and our goal is to assign to each vertex a

label yu ∈ {0, 1} that represents the type of the blood vessel: yu = 1 for arteries

and yu = 0 for veins. The edges in the graph encode the relations and interactions

between vessels, such as parent-child relations at bifurcations and crossings of vessels.

An optimal labeling of the vascular network is then obtained by solving the following

problem:

y∗ = arg min
y

U(y), (10.1)

in which y = {yu}u∈V and in which the energy function U has the form of a binary

first-order Markov Random Field (MRF):

U(y) =
∑
u∈V

θu(yu,xu)︸ ︷︷ ︸
unary term

+λ
∑

(u,v)∈E

θuv(yu, yv)︸ ︷︷ ︸
pairwise term

. (10.2)

In this formulation, the first term is a sum of unary potential functions θu, taking as

input a binary label yu and an evidence feature vector xu for this label. The second
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term consists of pairwise potentials θuv, each a function of a pair of labels. The binary

MRF variables is then described as a set of vertices V in an undirected graph G = (V,E)

in which the set of edges E contain the pairwise potentials. The λ parameter weights

the pairwise term relative to the unary term.

The unary potentials optimize the labels based on local feature vectors xu that have

been extracted for each vessel. We define the unary potential as

θu(yu,xu) := − ln p(yu|xu), (10.3)

where p(yu|xu) is a posterior PDF (via Bayes rule):

p(yu|xu) =
p(xu|yu)p(yu)

p(xu|yu = 0)p(yu = 0) + p(xu|yu = 1)p(yu = 1)
, (10.4)

where p(xu|yu) is the likelihood of a feature vector xu for a given label yu, and p(yu) is

the prior PDF of the label yu. We assume that the likelihood of the feature vectors xu

follows a multivariate Gaussian distribution p(xu|yu) = N (µyu |Σyu) for both classes

yu ∈ {0, 1}. This means a training step is required to obtain the mean vectors µyu ,

covariance matrices Σyu , and prior probabilities p(yu) for yu ∈ {0, 1}.
The pairwise potentials θuv(yu, yv) penalize crossings of vessels with the same label,

or bifurcations of vessels with different labels. We define

θuv(yu, yv) = γuv(1− δ(yu, yv)), (10.5)

where γuv := −1 if vessels u and v cross, γuv := 1 if vessel u bifurcates from v or vice

versa, and δ(yu, yv) := 1 if yu = yv and δ(yu, yv) := 0 otherwise. This results in a utility

of −λ for correct crossings and a penalty of λ for incorrect bifurcations.

We arrive at the following problem-specific cost function

U(y) =
∑
u∈V
− ln p(yu|xu)︸ ︷︷ ︸

local features

+λ
∑

(u,v)∈E

γuv(1− δ(yu, yv))︸ ︷︷ ︸
contextual features

. (10.6)

10.2.2 Feature Extraction and Training

To find the unary and pairwise potential functions, two types of features are required.

To determine the posterior PDF in the unary potentials, a feature vector xu, representa-

tive of the differences between arteries and veins, is needed. To determine the pairwise

potentials, the method requires contextual information from the tracking models.
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Figure 10.1: (a) Example of a retinal vasculature tracking model. (b) Detail of a

tracked vessel and its profile measurement locations. (c) Average (transversal) vessel

intensity profile sampled from edge to edge with 21 points.

10.2.2.1 Local Features

The differences in color and central light reflex of arteries and veins can be captured in

transverse intensity profiles Grisan & Ruggeri (2003); Li et al. (2003); Vazquez et al.

(2010). Like in previous work Dashtbozorg et al. (2014), we found that these differences

are largest in the red color channel.

For each pair of edge points on the tracked vessels, the intensity values on 21 points

on a line between the edge points were extracted via cubic Hermite spline interpolation

of the red channel of the image. The number of points is constant, independent of

vessel width or resolution. This resulted in a number of intensity profiles for each

vessel the size of which depends on the length of the tracked vessel. Prior to this, the

red channel had been normalized using a lightness and contrast (LC) normalization

described in Foracchia et al. (2005). Additionally, each of the intensity profiles was

normalized to zero mean and unit standard deviation. The intensity profiles of each

vessel were averaged pointwise, resulting in one feature vector xu per vessel (Fig. 10.1).

The intensity profiles of a training set were used to determine p(yu|xu) by calculating

the mean vector µyu , covariance matrix Σyu , and prior PDF p(yu) for arteries and veins

separately.
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Figure 10.2: Example of a set of vessels and resulting QPBO graph. Vessels a and

b cross and need to be labeled oppositely, whereas vessels b and c belong to the same

branch and thus must receive the same label. Hence, in the QPBO graph, â and ā are

connected to b̄ and b̂, while b̂ and b̄ are connected to ĉ and c̄ respectively. These edges

all have weight λ/2. The edge weights of the edges to s and t correspond to the unary

terms in equation (10.6). The graph cut shown is the result if the sum of weights of

the black edges is higher than the sum of the weights of the gray edges, and results in a

labeling where a is an artery and b and c are veins.

10.2.2.2 Contextual Features

The contextual features γuv can be directly extracted from the tracking models made

with the ETOS algorithm (Ch. 7). The actual crossings were detected by determining

intersections of the tracked center lines of the vessels. Bifurcations are detected during

tracking itself (see Subsec. 7.4.1.4).

10.2.3 Energy Minimization

Energy functions of binary variables which have the form of (10.2) can be optimized

exactly using graph cuts Greig et al. (1989) if they are graph representable Kolmogorov

& Zabin (2004). Such an energy function is graph representable if it is submodular,

which means that all pairwise terms must satisfy

θuv(0, 0) + θuv(1, 1) ≤ θuv(1, 0) + θuv(0, 1). (10.7)

Our energy function U(y) defined in (10.6) is, however, not sub-modular due to the

fact that submodularity (Eq. (10.7)) is not satisfied for the case of crossings, as there

γuv = −1 < 0. This means that the energy function cannot be optimized using a
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standard graph cut algorithm. Therefore, we use the Quadratic Pseudo-Boolean Opti-

mization algorithm (QPBO) Kolmogorov & Rother (2007). This algorithm transforms

supermodular problems into submodular problems which have partial solutions. The

solutions are partial in the sense that in theory they may contain ‘unknown’ labels (as

we explain below). I.e., now yu ∈ {0, 1, ∅} with ∅ denoting the ‘unknown’ label. Before

we explain the QPBO algorithm, let us first provide the basics of energy minimization

via graph cuts.

10.2.3.1 Energy Minimization using Graph Cuts.

In graph cut methods all terms in the energy function are described in a graph by edges

with positive weights. In order to describe the unary terms as edges, two additional

vertices are added to the graph: a source s and a sink t. These two new vertices

are then connected to all other vertices. The edges connecting to s get a weight of

θu(1,xu), and the edges connecting to t get weights equal to θu(0,xu). A graph cut is

then defined as the cut that partitions the full set of vertices into two subsets S and V

(which respectively contain s and t), and the cut-set is defined as the set of all edges

that connect a vertex in S to a vertex in T . The sum of all edge weights in the cut-set

is called the cut weight, and the graph cut that results in a minimal total cut weight is

called the minimal cut. All vertices in S are then labeled with yu = 1 and the vertices

in T with yu = 0.

It can be shown that the problem of finding the minimal graph cut is equivalent

to the minimization of submodular energy functions of the form (10.2) Kolmogorov &

Zabin (2004). Due to the theorem of Ford & Fulkerson (1956), finding the minimal

graph cut is equivalent to computing the maximum flow from the source to sink (in

which edge weights are interpreted as capacity).

10.2.3.2 The QPBO Algorithm

For every vertex u in the original problem, the QPBO problem has two vertices û and

ū. Each of these vertices is connected to a source s and a sink t in a flow graph Ford

& Fulkerson (1956), see Fig. 10.2. The û vertices connect to s by an edge with weight

θu(1,xu) and to t by an edge with weight θu(0,xu). These edge weights correspond to

the unary terms in equation (10.6). The ū vertices connect to s by an edge with weight

θu(0,xu) and to t by an edge with weight θu(1,xu). The pairwise terms are modeled as

edges between vertices. For two crossing vessels u and v the weights are θûv̄ = λ/2 and

θv̂ū = λ/2, for bifurcating vessels u and v the weights are also θūv̄ = λ/2 and θûv̂ = λ/2.
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All other pairwise weights are 0.

To find the minimum cut in the QPBO-version of the flow graph, we used the

Ford-Fulkerson method Ford & Fulkerson (1956). After computing a minimum s − t
cut (S, T ), the final labels of the vertices are determined as follows: if û and ū are in

opposite cut sets, the original vertex u receives the label of û. If û and ū are in the same

cut set, an ‘unknown’ label yu = ∅ is attached to u. In our experiments, however, we

did not once encounter the ‘unknown’ label in the solutions. The method is illustrated

in Fig. 10.2.

10.3 Experiments

10.3.1 Ground Truth Data

We validated the method on a ground truth data set of 150 images. All images were

taken with a digital non-mydriatic white light fundus camera of the Nidek brand,

model AFC-230, with a 45◦ field of view and a resolution of 3744 × 3744. For each

of the images, a model of the vasculature was generated using the ETOS algorithm

(Ch. 7), and corrected manually when necessary. The vessels were labeled as arteries

and veins through consensus of two graders. In total, the dataset contains 3186 vessels,

divided in 1693 arteries and 1493 veins.

10.3.2 Method Parameterization and Validation

The energy function in Equation (10.6) contains one parameter λ which weights the in-

fluence of local and contextual features. To determine the dependence of our method on

this parameter, the accuracies for classification for increasing values of λ was evaluated.

In our experiments we used a leave-one-out cross validation and computed 150 times

a confusion matrix. Each time the data of 149 images were used for training of the

unary potential functions and then the method was tested on the left-out image. By

summing the confusion matrices for all images, we obtained a confusion matrix of the

whole data set, and thus accuracy and sensitivity, for each of the λ values.

By setting λ to zero, no contextual information is included at all. This setting

is used as a baseline, achieving a classification accuracy of 81.2% for all vessels, and

91.8% for the six arteries and veins with highest caliber (the ‘Big-6’ arteries and veins,

see Table 10.1). Accuracy increased with increasing λ, to 94.0% for the ‘Big-6’ arteries

and veins, and to 88.0% for all vessels. This compares well to accuracy levels acquired
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Figure 10.3: Classifica-

tion accuracy against the

value of λ for all vessels,

and the six biggest arter-

ies and veins found after

classification for all images

(‘Big-6’). For λ > 8 accu-

racy remains constant.
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Figure 10.4: Accuracies

for each image for λ = 8

against λ = 0. A major-

ity of 105 images (green)

show an increase in accu-

racy, 12 images show a de-

crease (red) and 33 images

show no change (blue).
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Figure 10.5: Accuracy

difference between using

λ = 8 and λ = 0 against

total number of bifurca-

tions and crossings. Each

point shows the average for

images with that number of

bifurcations and crossings.

with methods in literature that were validated on different data sets (87.6% Grisan &

Ruggeri (2003), 85.5% Li et al. (2003), 88.3% Dashtbozorg et al. (2014), 88.8% Vazquez

et al. (2010)).

We evaluated the accuracy for values of λ up to 50, which is sufficient to let the

pairwise terms dominate the unary terms completely. At λ = 8, accuracy stopped

increasing, which is why this value is used in subsequent experiments (Fig. 10.3). We

confirmed the significance of the improvement of using λ = 8 compared to using λ = 0

using McNemar’s test (χ2 = 150, p < 0.001).

In 105 out of 150 images the accuracy was higher for λ = 8 than for λ = 0 (Fig. 10.4).

In twelve images the accuracy did not improve. This is caused by incorrect high pos-

terior probabilities of a vessel that bifurcates from (or has a crossing with) another

vessel. As an example, consider the case of a crossing of an artery vA and vein vV for

which the posteriors p(xu|Artery) are 0.6 and 0.7 respectively. Based on the posterior

probabilities, both would be classified as arteries, but by the fact that they cross, they

are classified as a vein and artery respectively, since the penalties for classifying vV as

a vein or classifying both as arteries is higher than classifying vA as a vein.

Other errors are caused by incorrect local classifications. Table 10.1 shows that

overall veins are classified more accurately than arteries, which was seen before by
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Table 10.1: Comparison of accuracy and sensitivity for arteries and veins for λ = 0

and λ = 8 (maximal contextual information), for vessels of different calibers, all vessels,

and the six biggest arteries and veins found in the classification. N is the number of

vessels in the category. For the ‘Big 6’ category the number N reflects how many of the

six required arteries and veins were found in the classification.

λ = 0 λ = 8

Sensitivity Sensitivity

Caliber N Accuracy Arteries Veins N Accuracy Arteries Veins

0 - 20 pixels 960 65.7% 64.4% 74.5% 960 78.2% 75.3% 86.9%

20 - 25 pixels 985 83.2% 82.2% 86.1% 985 89.1% 88.6% 90.4%

25 - 30 pixels 664 90.1% 89.3% 90.9% 664 94.1% 93.5% 94.9%

≥ 30 pixels 577 93.4% 85.0% 96.6% 577 95.3% 88.7% 97.8%

All vessels 3186 81.2% 76.4% 90.1% 3186 88.0% 84.5% 93.2%

‘Big 6’ 1704 91.8% 88.8% 95.1% 1797 94.0% 92.4% 95.8%

other authors Dashtbozorg et al. (2014); Li et al. (2003).

To investigate which vessels benefit most from the contextual information, we sep-

arated the vessels into groups based on caliber. We found that the accuracy improves

most for the smallest vessels (0-25 pixels in caliber) and less for the larger vessels (above

25 pixels, see Table 10.1). Furthermore, we clearly see a positive correlation of the ac-

curacy with the total number of crossings and bifurcations, which demonstrates the

value of contextual features for classification (Fig. 10.5).

10.4 Conclusion
In this work we propose a graph-based method to combine local and contextual features

in artery/vein classification of vessels in retinal images, which we validated on a clinical

dataset of 150 retinal images. As local features of the vessels we use intensity profiles,

and as contextual features we include restrictions imposed by bifurcations and crossings.

The inclusion of contextual features significantly improves the classification accuracy

compared with using local features alone. The classification accuracy of our method

of 88.0% compares well with previous methods. For the six arteries and veins with

highest caliber we obtain an accuracy of 94.0%. The classification of vessels with a

lower caliber benefits most from the contextual information. Because local information

is less reliable in these vessels, contextual information is essential.
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Chapter 11

Vessel Geometry In Orientation

Scores Part I: Pixel-wise

Curvature Measurements and

Curvature-Based Biomarkers

This chapter is based on1:

Bekkers, E., Zhang, J., Duits, R., ter Haar Romeny, B.: Curvature based biomarkers for dia-

betic retinopathy via exponential curve fits in SE(2). In Trucco, E., Chen, X., Garvin,

M.K., Liu, J.J., Frank, X.Y., eds.: Proceedings of the Ophthalmic Medical Image Anal-

ysis Second International Workshop, OMIA 2015, Held in Conjunction with MICCAI

2015, Munchen, Germany, October 9, 2015. Iowa Research Online (2015) 113-120

1Tos Berendschot (Maastricht University Eye Hospital) is gratefully acknowledged for his in-

volvement in the clinical validation of the developed biomarkers using data of the Maastricht

study (Subsec. 11.5.2). Robert Zivadinov (Buffalo Neuroimaging Analysis Center) is gratefully

acknowledged for sharing with us data of the CEG-MS study (Subsec. 11.5.3).
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11.1 Introduction

Systemic diseases, such as diabetes, may cause quantifiable changes to the geometry of the

retinal microvasculature Ikram et al. (2013); Kalitzeos et al. (2013). One of the most relevant

geometrical features of the microvasculature is vessel tortuosity Cheung et al. (2012); Hart et al.

(1999); Kalitzeos et al. (2013); Sasongko et al. (2011). While for some geometrical features (such

as vessel calibre) there is a general consensus Ikram et al. (2013) on how they are associated to

several diseases. This is not the case for vessel tortuosity, which makes it still a very relevant

topic of research. E.g., in Cheung et al. (2012) a positive, and in Sasongko et al. (2011) a

negative association of vessel tortuosity with progression towards diabetic retinopathy (DR) is

found. In this work, we present a novel robust and fully automated method for the extraction

of tortuosity measures, and show strong positive associations of the measures with diabetes and

progressive stages of DR.

Vessel tortuosity descriptors are typically computed via an extensive pipeline (including

manual interventions) of image pre-processing, segmentation, thinning and splitting of the

vascular network, after which tortuosity values are computed from the extracted vessel center

lines Cheung et al. (2012); Hart et al. (1999); Kalitzeos et al. (2013); Wilson et al. (2008).

In such pipelines, errors introduced in each processing step may accumulate, and information

might get lost along the way. In particular the computation of curvature from segmentation

is highly dependent on the accuracy of the segmentation. Alternatively, we propose in this

chapter a reduced pipeline that does not rely on explicit segmentation of the blood vessels, but

instead computes tortuosity features directly from retinal image data.

The proposed method is based on theory of best exponential curve fits in the roto-translation

group SE(2) (cf. Sec. 6.2.3), developed by Duits, Franken and Janssen Franken & Duits (2009);

Duits & Franken (2010b); Duits & Janssen et al. (2016). To this end, we lift 2D images to three-

dimensional orientation scores by including an orientation dimension. In the extended domain

of positions and orientations we study exponential curves, whose curvatures are constant. By

locally fitting exponential curves Duits & Janssen et al. (2016) to data in orientation scores,

we are able to assign to each location a curvature and measurement-confidence value, which we

use to define global tortuosity measures.

In this chapter we additionally improve the accuracy of best-exponential curve fits via a

novel refinement procedure that results in more accurate curvature estimations. In the valida-

tion section we quantify this improvement (Subsec. 11.4.1), and in a stability analysis, where

we use repeated measurements on a number of healthy subjects (Subsec. 11.4.2), we show that

our novel method for the computation of tortuosity based biomarkers via exponential curve

fits in SE(2) is more repeatable than a conventional segmentation based pipeline. Finally,

we demonstrate the potential use of the developed biomarker for use in clinical epidimilogical

studies with the application to clinical datasets. We analyse four different datasets and show

a positive association of our tortuosity based biomarker with diabetes mellitus (Subsec. 11.5.2)

and hypertension (Subsec. 11.5.3), which is in line with similarly reported findings in Cheung

et al. (2011b); Han (2012); Hughes et al. (2006); Owen et al. (2011); Sasongko et al. (2011,
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2015); Tam et al. (2011); Weiler et al. (2015). Before we describe our results let us start with

the theory and methods in Sec. 11.2 and Sec. 11.3.

Figure 11.1: A: Two exponential curves γch and γcl in SE(2), with high and low

curvature respectively. The coefficients c = (c1, c2, c3)T of tangent vectors γ̇c(t), ex-

pressed in the left invariant basis at location γc(t) are constant along the exponential

curves γc. This is emphasized in B and C, where one also observes a steeper slope in

θ-direction of the tangent vector γ̇ch compared to γ̇cl. In case of horizontal curves (for

which c2 = 0), the ratio κ = c3

c1
directly gives the curvature of curves PR2γc projected to

the plane, which is indeed higher for the high curvature exponential curve γch compared

to γcl.

11.2 Theory

11.2.1 Exponential Curves in SE(2)

Curves and Tangent Vectors in SE(2) Recall from Subsec. 2.1.6 and Subsec. 4.2.3 that pla-

nar curves γ2D(t) = (x(t), y(t))T can be naturally lifted to curves γSE(2)(t) = (x(t), y(t), θ(t))T ∈
SE(2) in the space of positions and orientations by considering the direction of the tangent

vector γ̇2D(t) as the third coordinate (θ(t) = arg(ẋ(t) + i ẏ(t))). Tangent vectors of pla-

nar curves γ̇(t) = (ẋ(t), ẏ(t)) ∈ T (R2) are usually spanned by a global basis {∂x, ∂y}, i.e.,

T (R2) = span{∂x, ∂y}. In SE(2) we must however work with a rotating frame of reference

{A1|g , A2|g , A3|g} = {cos θ∂x + sin θ∂y,− sin θ∂x + cos θ∂y, ∂θ}, aligned with the orientation

at each g ∈ SE(2), rather than with a global frame {∂x, ∂y, ∂θ}. The tangent space at each g

is spanned by the left-invariant frame Tg(SE(2)) = span{A1|g , A2|g , A3|g}.
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Exponential Curves in SE(2) An exponential curve is a curve whose tangent vector

components c = (c1, c2, c3)T expressed in the local left-invariant basis {Ai|γc(t)}3i=1 are con-

stant, i.e., γ̇c(t) = c1 A1|γc(t) + c2 A2|γc(t) + c3 A3|γc(t), for all t ∈ R. Exponential curves in

SE(2) can be regarded as ”straight lines” with respect to the curved geometry of SE(2). The

exponential curve through g with tangent c is denoted by γgc (t) = g · exp(t(
∑3
i=1 c

iAi)) with

{A1, A2, A3} the basis for the Lie algebra (cf. Subsec. 2.3.3). By direct computation it follows

that γgc is a helix with constant curvature and torsion in SE(2). For details see Sec. 2.2.3,

Sec. 2.3.3, and Chirikjian (2000); Duits & Janssen et al. (2016). For intuition see Fig. 11.1.

The explicit formulas for these exponential curves are well-known (see e.g. Sec. 2.3.3 and Duits

& Janssen et al. (2016); Sanguinetti et al. (2010)). Here however, we do not need these formulas

as we directly deduce curvature of spatially projected curves PR2γc (cf. Fig. 11.1) from vector

c via

κ =
c3 sign(c1)√
|c1|2 + |c2|2

. (11.1)

See also Duits & Janssen et al. (2016) and (Franken & Duits, 2009, ch. 2.9) for more details.

Figure 11.2: Construction of an orientation score (OS) (middle panel) from an

image (left panel) via the OS-transform Wψ. In the score a derivative frame

{A1|g , A2|g , A3|g}, aligned with group elements g = (x, y, θ), is used for tangent vec-

tor (c∗) estimation of exponential curves γc∗. Using c∗, curvature and measurement

confidence values can be computed, which are encoded resp. in color and opacity in the

right panel.

11.2.2 Exponential Curve Fits

Orientation Scores In this chapter we analyse image data in the form of real valued orientation

scores U : L2(SE(2)) → R, which are functions on SE(2), and which are constructed from an

image f by means of correlation with some anisotropic wavelet ψ via the wavelet transform as

defined in Eq. (2.1) on page 25. For more details on orientation scores see Sec. 2.1. In this

chapter we again use cake wavelets (cf. Subsec. 2.1.5) for ψ in the transformation. The left
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two panels of Fig. 11.2 show an image with different curvature circles and the corresponding

orientation score.

Best Exponential Curve Fits We compute curvature values directly from tangent vectors

(see Eq. (11.1)) of exponential curves that locally best fit the data. In medical image analysis

applications the direction of minimal principal curvature, obtained via eigensystem analysis of

the Hessian matrix, is often used in the computation of vectors tangent to oriented (tubular)

structures. This concept is for example used in the well-known Frangi vesselness filter Frangi

et al. (1998), see also Sec. 3.2. Here we exploit a similar approach, however, when considering

the curved domain R2 o S1 we must pay attention to the following:

1. Rather than using a global {∂x, ∂y, ∂θ} derivative frame (we use short hand notation

∂i = ∂
∂i ) we must take into consideration the curved geometry of the domain, and

compute the Hessian matrix H(g) at each g = (x, y, θ) via left-invariant derivatives,

where we rely on (6.3):

H(g) =

 (A2
1U)(g) (A2(A1U))(g) (A3(A1U))(g)

(A1(A2U))(g) (A2
2U)(g) (A3(A2U))(g)

(A1(A3U))(g) (A2(A3U))(g) (A2
3U)(g)

 , (11.2)

with the left-invariant vector fields Ai defined in (2.42) on page 48. For more details on

the left-invariant Hessian see Subsec. 6.2.3 and Duits & Janssen et al. (2016); Franken

& Duits (2009).

2. Since left-invariant derivatives are non-commutative, e.g. A3A1U 6= A1A3U , the Hessian

matrix H(g) is not symmetric. In order to obtain real-valued eigenvalues of a dimen-

sionless matrix, we symmetrize the Hessian matrix via

Hξ(g) := Mξ−1H(g)TMξ−2H(g)Mξ−1 ,

and perform eigenanalysis on Hξ(g). Here matrix Mξ = diag{ξ, ξ, 1} and ξ is a parameter

with unit 1/length that makes the new symmetrized Hessian dimensionless.

The exponential curve fitting used in this chapter follows the same procedure as described in

Subsec. 6.2.3, and is as follows. Eigenvector Mξc
∗ with lowest eigenvalue of the dimensionless

(ξ-scaled) matrix Hξ(g) does not give the minimal principal curvature direction, but rather

provides the solution to the following optimization problem Duits & Janssen et al. (2016):

c∗(g) = argmin
c∈R3,‖c‖µ=1

{∥∥∥∥ ddt (∇U(γgc (t)))

∣∣∣∣
t=0

∥∥∥∥2

µ

}
, (11.3)

with left-invariant gradient ∇U = Mξ−2(A1U,A2U,A3U)T and ‖c‖2ξ = ξ2|c1|2 + ξ2|c2|2 + |c3|2.

Intuitively speaking, c∗ gives the tangent vector components of the exponential curve γgc∗(t),

starting at position g at t = 0, along which the left-invariant gradient has fewest variations

(Fig. 11.2). As an alternative approach, tangent vector estimation can be done based on the

structure tensor as well, which is done in work by van Ginkel van Ginkel (2002). A full overview
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of exponential curve fit models, with 3D extensions, can be found in Duits & Janssen et al.

(2016).

Gaussian Derivatives In our implementation we use Gaussian derivatives to compute

the Hessian matrix, i.e., in Eq. (11.2) we substitute U ← (Gσs,σo ∗ U), with Gσs,σo(x, θ) a

Gaussian kernel with spatial isotropic scale 1
2σ

2
s , and orientation scale 1

2σ
2
o . For the numerical

implementation it is important to take into account the non-commutative structure of the

group. In particular when computing the Hessian matrix in two steps it is important to put

the orientation derivative A3 up front, and take the following two properties into account:

[As
i ,As

j ] =
3∑
k=1

ckijA2s
k , and As

iAs
j = As

jAs
i + [As

i ,As
j ], (11.4)

where a Gaussian derivative1 at scale s = ( 1
2σ

2
s ,

1
2σ

2
o) is denoted with As

i , and the commutators

and structure constants ckij are respectively given in (2.44) and (2.45) on page 48. E.g., As
3As

1 =

As
1As

3 +A2s
2 .

11.3 Global Tortuosity Measures From Pixel-

Wise Curvature Voting

11.3.1 Global Tortuosity Measures

Based on the exponential curve fits in orientation scores we can assign to each location g =

(x, y, θ) in the score a curvature value

κ(g) = K(U)(g) =
c3(g) sign(c1(g))√
|c1(g|2 + |c2(g)|2

, (11.5)

withK denoting the operator that computes the curvature values, and with c = (c1(g), c2(g), c3(g))

the coefficients of the best exponential curve fit at g. It is also possible to compute for each

g an confidence measure s(g) that indicates the reliability of the measurement. This measure,

called the orientation confidence is defined below in Eq. (11.9). See for example the right-most

panel in Fig. 11.2.

As global tortuosity measures we then consider the weighted average2 of absolute curvature

1Recall that in the vessel enhancement chapter (Ch. 6) we used a different notation since

we considered the special case s = ( 1
2σ

2
s ,

1
2 (ξσs)

2). Note that then the notations relate via

As
iU = (AiU)s,ξ.

2Weighted by the orientation confidence s(g).
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values µ
SE(2)
|κ| , and the weighted standard deviation of absolute curvature values σ

SE(2)
|κ| :

µ
SE(2)
|κ| =

1

stotal

∫
R2

∫ π

0

|κ(x, θ)|s(x, θ)dθdx (11.6a)

σ
SE(2)
|κ| =

√
1

stotal

∫
R2

∫ π

0

(|κ(x, θ)| − µ|κ|)2s(x, θ)dθdx, (11.6b)

with stotal =
∫∞
−∞

∫ π
0
s(x, θ)dxdθ.

We want our new approach to global tortuosity measures to be compatible with other 2D

”confidence” maps (such as e.g. the 2D Frangi vesselness filter Frangi et al. (1998)), and as

such we also define 2D curvature and confidence maps as follows

κ(x) := κ(x, θ∗(x)) (11.7a)

s(x) := s(x, θ∗(x)), with (11.7b)

θ∗(x) = argmax
θ∈S1

s(x, θ), (11.7c)

and define the global tortuosity measures based on these (compactly supported) 2D maps as

follows:

µ|κ| =
1

stotal

∫
R2

|κ(x)|s(x)dx (11.8a)

σ|κ| =

√
1

stotal

∫
R2

(|κ(x)| − µ|κ|)2s(x)dx, (11.8b)

with stotal =
∫
R2 s(x)dx.

11.3.2 Orientation Confidence

Based on the Hessian matrix and the obtained principle directions it is possible to define a

gauge frame Bi as described in Subsec. 6.2.3, and compute a Laplacian in the plane orthogonal

to the tangent direction c∗(g) which we use to define the orientation confidence measure s(g):

s(g) = S(U)(g) = (−∆oU(g))+ = (−((B2
2U)(g) + (B2

3U)(g)))+ (11.9)

in which S denotes the operator of computing the orientation confidence, ∆o the Laplacian

operator in the plane orthogonal to the tangent direction c∗, where (v)+ = max{v, 0}, and

where Bi are the gauge derivatives defined in Eq. (6.5) on page 143. For computational efficiency

it is useful to realize that the second order gauge derivatives B2
i can be computed directly from

the Hessian matrix H(g) and the eigenvectors Mξc
i as follows

(B2
iU)(g) = ci(g))TH(g)ci(g). (11.10)
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11.3.3 Iterative Stabilization of Orientation Confidence

Improved accuracy of the confidence and curvature measurements is achieved via the following

stabilizing refinement scheme:

sn+1 =
1

‖S(sn)‖∞
S(sn), with s1 = S(U), κn+1 = K(sn), with κ1 = K(U), (11.11)

where we denote the computation of the confidence map s from input volume U with S(U),

and the computation of curvature κ with K(U). We experimentally observed that the above

iterative scheme converges (see Fig. 11.3 for an example), and found n = 3 iterations to be a

good balance between accuracy of curvature measurements and computation time. This number

of iterations will be used in further experiments, unless indicated otherwise. A formal prove of

convergence of the iterative refinement scheme is left for future work.

11.3.4 Extensions and a Conventional Processing Pipeline

In addition to the orientation confidence we consider the following variations of weighting

functions for weighting the pixel-wise curvature measures:

• µconf|κ| : This is the weighted average curvature value as described in Eq. 11.8a. The

weighting function is thus the orientation confidence.

• µvess|κ| : This is the weighted average curvature value in which a vesselness image (a soft

segmentation) is used instead of s(x). In this chapter we used the soft segmentation

method described in Zhang et al. (2016a), which is a fast gauge-frame based orientation

score method that approximates and improves the vesselness method described in Ch. 6.

• µsegm|κ| : In this tortuosity measure the curvature values are weighted by a binary vessel

segmentation. The hard-segmentation is constructed by thresholding the previously

described soft-segmentation, followed by a false positive vessel removal pipeline Zhang

et al. (2016a).

• µcent|κ| : Here the curvature values are only averaged at vessel center line locations, which

are obtained by thinning the hard segmentation described in the previous item. This

approach is most similar to conventional processing pipelines, however, here the curvature

values are still computed from orientation scores and not from segmentations.

It is expected that µconf|κ| and µvess|κ| are the more stable measures due to their probabilistic

nature; high confidence locations have a high contribution to the average, and low confidence

regions are not completely ignored, but simply included with a lower weight. In theory, the

segmentation and center line method µsegm|κ| and µcent|κ| should give the best representation of the

actual vessel geometry, provided that the segmentation is accurate and it does not contain false

positives. It is however also expected that this method gets increasingly instable with decreasing

image quality due to binary weighting functions; false positive segmentations contribute equally

strong to the final tortuosity measure. Finally, we compare our method with a conventional

approach:
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• µcent,conv|κ| : This method is similar to the µcent|κ| , however, now the curvature values are

computed from B-spline functions which are fitted to each sequence of center line coor-

dinates.

Such a conventional approach has the drawback that inaccurate vessel segmentations introduce

errors both by (1) weighting false positive vessels as strongly as true positive vessels in the

tortuosity measure, and (2) producing incorrect local vessel curvature measurements due to

inaccurate vessel parameterizations. Finally, it should be remarked that the center line methods

weight both large and small vessels equally heavily, while the other methods put more emphasis

on larger blood vessels.

Figure 11.3: From left to right: input image (SNR=1), ground truth color-coded

curvature map, measured curvature map with resp. n = 1 and n = 10 refinements,

scatter plot of ground truth vs measured curvatures for resp. n = 1 and n = 10.

11.4 Validation

11.4.1 Validation on Local Curvature Measurements

In all experiments discussed in this chapter the scales σs = 3 and σo = π
18 are fixed, and

are chosen as to best match the cross-sectional scales of vessels/lines in the orientation score

(Sec. 2.1). We set µ = σo
σs

, and sample the orientation score with 18 orientations. Unless

indicated otherwise, we used n = 3 refinement iterations in the computation of orientation

confidence and curvature.

Our method is validated on two synthetic images (201px by 201px) with Gaussian white

noise (SNR=1): One image composed of three circles with radii of 50px, 70px and 90px; One

image composed of three crossing Euler spirals. The curvatures computed with our method

(third and fourth image in Fig. 11.3), with n = 1 and n = 10 refinement iterations (Eq. (11.11)),

were compared against the ground truth (second image Fig. 8.13). In the curvature maps,

curvature is encoded with color and confidence with opacity (see e.g. also Fig. 11.2). Visual

comparison shows a remarkable agreement between our method and the ground truth, and
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Figure 11.4: Mean normalized stan-

dard deviation for five different meth-

ods. A low mean normalized stan-

dard deviation indicates high repeatabil-

ity. See Subsec. 11.3.4 for a description

of the biomarkers µconf|κ| , µvess|κ| , µsegm|κ| ,

µcent|κ| and µcent,conf|κ| .

we observe improved precision of both the confidence and curvature measurements with an

increasing number of refinement iterations n. This is also confirmed by the comparison of

curvature measurements against the ground truth via scatter plots (the most right two figures

in Fig. 8.13). The root mean squared error of |κ| was reduced from 0.0138 for n = 1 to 0.0024

for n = 10.

11.4.2 Repeatability/Reproducibility

For the quantification of the stability of the proposed tortuosity based biomarker extraction

methods we made repeated fundus photographs (Model AFC-230, Nidek) of 12 healthy subjects.

The nasal view of each subject’s right eye was photographed 5 times, with an interval of ± 2

minutes in between the aquisitions. Due to the relatively short intervals between the acquisitions

the pupils start to narrow as a result of the camera flash. In our test dataset this resulted in

realistic variations in image quality due to varying pupil sizes.

To quantify repeatability of the methods we computed the tortuosity biomarkers on each

image, and computed for each patient a normalized standard deviation. A low normalized

standard deviation indicates high repeatability. The final score for each biomarker extraction

method evaluated in this section is then given as the mean (over all 12 subjects) normalized

standard deviation. Results are depicted in Fig. 11.4.

As expected (see explanation of the methods in Subsec. 11.3.4) the methods with non-

binary weighting functions, µconf|κ| and µvess|κ| , have highest repeatability. These methods are less

affected by imaging artifacts. The binary weighting method µsegm|κ| has medium performance

in comparison to the other methods. The center line methods µcent|κ| and µcent,conv|κ| have low

repeatability, with the conventional method µcent,conv|κ| giving lowest repeatability.
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11.5 Application to Clinical Data

11.5.1 Response to Diabetic Retinopathy Images

In this section we investigate the applicability of the pixel-wise curvature measurement method

in combination with the iterative orientation confidence method introduced in Subsec. 11.3.3.

Tortuosity measures µconf|κ| and σconf|κ| (cf. Eq. (11.8)) are computed on images of two

publicly available database that include pathological images: 1) the high resolution fundus

(HRF) database Odstrcilik et al. (2013), consisting of 15 images of healthy controls, and 15

images of diabetes patients; 2) the MESSIDOR database MESSIDOR (2008), consisting of 1200

images of diabetes patients which are graded for diabetic retinopathy: R0 (no retinopathy),

R1, R2 and R3 (severe retinopathy). All images are made with 45 degree field of view (FOV)

cameras, however with varying image resolutions. In order to have approximately the same

physical pixel size in all images, they are cropped and resized such that the FOV area spans

a width of 1024px. Curvature and confidence measures were computed with n = 3 refinement

iterations.

Fig. 11.5 shows a selection of results. Fig. 11.6 and Tab. 11.1 show the distribution of

feature values for different subgroups of the HRF and MESSIDOR database. Based on a

Mann-Whitney U test (p-values reported in Tab. 11.1) we conclude that all subgroups show a

significant increase in µ|κ| and σ|κ| in comparison to the corresponding base groups (healthy for

HRF, and R0 for MESSIDOR).

We also observe that our method detects microbleeds and hemorrhages as high curvature

regions (Fig. 11.5). While this was not our intention, it is a very welcome property when using

features µ|κ| and σ|κ| as biomarkers for DR. However, for research dedicated to the retinal

vasculature one only wants to analyse blood vessels. As such we consider in the subsequent

Subsecs. 11.5.2 and 11.5.3 also a weighting of the curvature values with vesselness specific

weighting functions.

11.5.2 Curvature Biomarker in Association with Diabetes

Mellitus Type 2

In this and the following subsection we apply our method to large clinical datasets which we can

use to study the association of our developed biomarkers with general health status parameters

such as diabetes status, hypertension and age.

Dataset and Analysis The goal of our first study is to investigate the association of

vessel tortuosity with the status of diabetes mellitus type 2. The dataset consists of people

suffering from diabetes and healthy controls which have been imaged (with a Nidek AFC-230)

in the Maastricht Study. The Maastricht study is an epidemiological study which studies the

prevention, causes and treatment of diabetes mellitus and cardiovascular diseases.

The dataset and our analysis have the following characteristics:

• The dataset contains 810 healthy controls.
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Figure 11.5: Results on three images of the MESSIDOR database. Measured absolute

curvature |κ| encoded in color, and confidence s encoded with opacity, overlain on the

original image, together with the histogram of measured κ values.

Figure 11.6: Box-and-whisker plots of tortuosity measures µ|κ| and σ|κ| in subgroups

of the HRF and MESSIDOR database.
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Table 11.1: Tortuosity measures µ|κ| and σ|κ| in the HRF and MESSIDOR database.

Subgroup Mean ± (STD)

µ|κ| (10−2) σ|κ| (10−2)

———————— HRF ————————

Healthy 1.372 ± (0.069) 1.796 ± (0.072)

Diabetic 1.521 ± (0.130) 2.073 ± (0.185)

p-valuea < 0.001 < 0.001

——————– MESSIDOR ——————

R0 1.624 ± (0.120) 2.333 ± (0.134)

R1 1.657 ± (0.124) 2.365 ± (0.131)

p-valueb 0.007 0.020

R2 1.698 ± (0.122) 2.436 ± (0.144)

p-valueb < 0.001 < 0.001

R3 1.795 ± (0.160) 2.674 ± (0.235)

p-valueb < 0.001 < 0.001

a Compared to Healthy.
b Compared to R0.

• The dataset contains 53 patients with a fasting glucose impairment (IFG).

• The dataset contains 156 patients with a glucose tolerance impairment (IGT).

• The dataset contains 555 patients with diabetes mellitus type 2 (DM2).

• The average age was 58.08 (standard deviation 8.09).

• The gender ratio was 0.5.

• Of each subject an optic nerve head centered fundus image of the right eye was processed

to compute the tortuosity biomarkers.

• In each image the optic nerve head was automatically detected using the method pro-

posed in Ch. 5. The weighting functions were masked in order to standardize the mea-

surement region to the region from 2 to 6 optic disk radii away from the optic nerve head

center.

• The same camera was used on which we have tested the repeatability of our methods.

As is common in statistics in ophthalmic epidemiological studies (see e.g. Armstrong (2013)

for guidelines), our analyses are based on linear regression tests. Here the dummy variables

IFG, IGT and DM2 are binary and we additionally correct for age and gender. In this test

each parameter is tested for a signficant contribution (p-value) to the linear model that explains

the curvature biomarkers. The linear model has a so-called β coefficient for each parameter.

Here we only report the sign of the β coefficient: it represents either a positive or negative

association.
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Tab. 11.2 summarizes our results. The parameters that had a significant1 influence on the

regression are highlighted in boldface. Two images from this database with respectively low

and high curvature are shown in Fig. 1.5 on page 11 with a curvature and segmentation overlay.

Associations With DM2 After correction for IFG, IGT, age and gender, the proposed

segmentation and centerline based tortuosity measures µsegm|κ| and µcent|κ| were significantly and

positively associated with diabetes type 2. These results are in line with other results published

in literature Sasongko et al. (2011, 2015); Tam et al. (2011); Weiler et al. (2015), however

contradicts a publication by Cheung et al. (2012) in which a negative association of tortuosity

was found with DM2 (see Subsec. 1.3.3 for a possible explanaition).

In Subsec. 11.4.2 we saw that the confidence and vesselness based weighting functions re-

sulted in the most repeatable measurements (resp. µconf|κ| and µvess|κ| ). These features however

do not show a significant association with DM2, whereas the binary weight function methods

(except for the conventional method) do. An explanation for this could be that the soft seg-

mentation based weight functions include too much non-vessel curvature in the average, by

which a distorted measurement could be obtained. These methods are thus stable due to their

probabilistic nature, but as a consequence they are also less specific in the identification of

the vessel measurement regions (also observed in Subsec. 11.5.1). Finally, we remark that the

conventional centerline based method did not show a significant association with DM2. Since

the only difference between µcent,conv|κ| and µcent|κ| is the way curvature is computed, we conclude

that this difference is caused by the method for computing curvature.

Associations With Age The regression test also shows that after correction for IFG,

IGT, DM2 and gender the features µconf|κ| and µcent,conv|κ| were significantly associated with age.

Interestingly, µconf|κ| shows a positive and µcent,conv|κ| shows a negative association with age. An

often occurring condition in elderly people is cataract, this affects the visibility of blood vessels

in retinal images. It could be that this affects both methods in different ways. This possible

aspect will be further investigated in future work.

11.5.3 Curvature Biomarker in Association with Hyper-

tension

Dataset and Analysis The goal of our second study is to investigate the association of vessel

tortuosity with hypertension. The dataset consists of SLO images (Model Spectralis, Heidelberg

Engineering) which are obtained during the CEG-MS study. The goal of the CEG-MS study is to

identify the role of cardiovascular, genetic and environmental risk factors and their interactions

with respect to radiological and clinical progression in Clinically Isolated Syndrome (CIS) and

Multiple Sclerosis (MS) subjects, as compared to controls and patients with other neurological

disorders over 5 years. In the sub-study discussed in this section we focus on the aspect of

hypertension and vessel tortuosity.

The dataset and our analysis have the following characteristics:

1We consider a test to be significant if the resulting p-value is below 0.05.
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Table 11.2: Regression analysis of retinal vascular curvature based biomarkers with

different statuses of diabetes such as impaired fasting glucose (IFG), impaired glucose

tolerance (IGT), diabetes mellitus type 2 (DM2), with corrections for gender and age in

volunteers from the Maastricht study. A p-value below 0.05 is considered a significant

association and is marked in boldface. The sign of the β-parameter indicates a positive

(+) or negative (−) association.

Feature name DM2 Age Gender

sign(β) p-value sign(β) p-value sign(β) p-value

µconf|κ| + 0.122 + ≤ 0.001 - 0.479

µvess|κ| + 0.154 + 0.127 + 0.682

µsegm|κ| + 0.004 + 0.544 - 0.805

µcent|κ| + 0.045 + 0.194 - 0.770

µcent,conv|κ| + 0.103 - 0.022 + 0.537

• The dataset contains 291 non-hypertensive controls.

• The dataset contains 130 hypertension patients.

• The average age was 45.16 (standard deviation 13.76).

• The gender ratio was 0.3 (more females than males).

• Of each subject an optic nerve head centered fundus image of the right eye was processed

to compute the tortuosity biomarkers.

• In each image the optic nerve head was automatically detected using the method pro-

posed in Ch. 5. The weighting functions were masked in order to standardize the mea-

surement region to the region from 2 to 5 optic disk radii away from the optic nerve head

center.

• Automatically generated vessel center line pixel maps were manually checked: false pos-

itive vessels were removed and the remaining vessels were labeled as either artery or

vein.

In contrast to the previously discussed diabetes study, with the current dataset we can addi-

tionally study differences between arteries and veins. Since the artery/vein labeling was only

done on centerline pixels, all other pixels were labeled automatically via nearest neighbor inter-

polation. This allows us to define the weighted average curvature features for arteries and veins

separately. The artery and vein separated features have respectively an additional superscript

label A and V . Tab. 11.3 summarizes our results.

Associations With Hypertension After correction for age and gender, almost all de-

veloped tortuosity measures show a significant positive association with hypertension. Only

the conventional tortuosity measures did not show a significant association. The significant
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Table 11.3: Regression analysis of retinal vascular curvature based biomarkers with

hypertension, gender and age in volunteers from the CEG-MS study. A p-value below

0.05 is considered a significant association and is marked in boldface. The sign of the

β-parameter indicates a positive (+) or negative (−) association.

Feature Hypertension Age Gender

approach sign(β) p-value sign(β) p-value sign(β) p-value

All Blood Vessels

µconf|κ| full-autom. + 0.003 + 0.334 - 0.581

µvess|κ| full-autom. + 0.002 + 0.310 - 0.261

µsegm|κ| full-autom. + 0.028 - 0.261 - 0.291

µcent|κ| full-autom. + 0.196 - 0.303 + 0.662

µcent,conv|κ| semi-autom.† + 0.073 - 0.456 - 0.680

Arteries

µconf,A|κ| semi-autom.‡ + ≤ 0.001 + 0.803 - 0.127

µvess,A|κ| semi-autom.‡ + ≤ 0.001 + 0.568 - 0.041

µsegm,A|κ| semi-autom.‡ + 0.017 - 0.047 - 0.098

µcent,A|κ| semi-autom.‡ + 0.006 - 0.059 - 0.284

µcent,conv,A|κ| semi-autom.†‡ + 0.064 - 0.006 - 0.100

Veins

µconf,V|κ| semi-autom.‡ + 0.027 + 0.225 + 0.244

µvess,V|κ| semi-autom.‡ + 0.046 + 0.351 + 0.619

µsegm,V|κ| semi-autom.‡ + 0.159 - 0.774 + 0.715

µcent,V|κ| semi-autom.‡ - 0.685 - 0.755 + 0.055

µcent,conv,V|κ| semi-autom.†‡ + 0.163 - 0.646 + 0.061

†Includes manual removal of false positive centerlines.
‡Includes manual labeling of arteries and veins.

The labels conf , vess, cent indicate that a weighted average of the absolute curvature |κ| is

obtained by weighting respectively with the orientation confidence map, vesselness map or a

vessel centerline map. The label cent, conv denotes computation of vessel curvature using a

conventional approach, measuring only at the vessel centerline.
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increase in overall retinal vascular tortuosity as observed with µconf|κ| , µvess|κ| and µsegm|κ| is mainly

explained by an increase in arteriolar tortuosiy: a positive significant association was found for

µconf,A|κ| , µvess,A|κ| , µsegm,A|κ| and µcent,A|κ| . When looking at the venular tortuostiy features, only a

significant association with µconf,V|κ| and µvess,V|κ| is observed.

The observed general increase in retinal vascular tortuosity with hypertension is in line with

other results report in literature Cheung et al. (2011b); Han (2012); Hughes et al. (2006); Owen

et al. (2011). However, the observation that this is mainly caused by an increase in arteriolar

tortuosity is only in line with Han (2012); Owen et al. (2011), but conflicts the findings of

Cheung et al. (2011b); Hughes et al. (2006) in which it is the venular tortuosity that explains

an overall increase in tortuosity.

Associations With Age and Gender Finally, we observe a significant negative associ-

ation of age with the features µsegm,A|κ| and µcent,conv,A|κ| . This suggests a straightening of blood

vessels with age. The regression tests also showed a significant decrease in tortuosity in males

(coded with dummy parameter value 1) when compared to females (coded with dummy param-

eter value 0). This observed association is in line with Cheung et al. (2011b); Wu et al. (2013);

Zhu et al. (2014). Note, however, that µvess,A|κ| is the only significantly associated features (out

of 15 tested features).

11.6 Conclusion

We developed new vessel tortuosity descriptors based on curvature estimations from best ex-

ponential curve fits in orientation scores and proposed a novel refinement scheme for improved

accuracy in curvature and confidence measures. Validation on synthetic images showed high

accuracy of our curvature extraction approach.

Application to clinical retinal image datasets showed strong positive associations of the

proposed tortuosity descriptors with different stages of diabetic retinopathy, diabetes mellitus

type 2 and hypertension. Our findings are in line with reported research results of other studies

(recall Sec. 1.3).

We also showed that our new approach to weighted average curvature biomarkers is more

stable than conventional approaches. Moreover, our new approach is modular: it allows free-

dom in the choice of weighting function, and allows for the inclusion of artery/vein pixel maps

for artery/vein specific measurements. In particular the aspect of artery/vein specific measure-

ments could provide interesting insight in geometrical vascular components of diseases, such as

we have showed with the found association of increased arteriolar tortuosity with hypertension

in Subsec. 11.5.3.

Except for the artery/vein specific analysis done in Subsec. 11.5.3, the proposed method is

fully automatic and highly repeatable. In order to also automate the artery/vein analyses we

develop in the next Ch. 12 the automated construction of artery/vein pixel maps.
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12. VESSEL GEOMETRY II: PIXEL-WISE WIDTH AND A/V

12.1 Introduction

This chapter aims to further explore the potential of analyzing and processing orientation scores

for the analysis of geometrical vessel properties. In this chapter we propose a new tubularity

measure which allows us to add several new pixel-wise feature computation methods such as

pixel-wise vessel width measurement, and pixel-wise artery/vein classification. As such, in the

later sections of this chapter proof of concepts are discussed with a strong focus on future work.

In Sec. 12.2 we develop two new tubularity measures V add : SE(2)× R+ → R and V prod :

SE(2)×R+ → R+ based on orientation scores and the right-regular representation R of SE(2)

(recall Subsec. 2.3.2). The two tubularity measures are respectively based on an additive (linear)

and multiplicative (non-linear) combination of edge information encoded in orientation scores.

As we will show in this chapter, the multiplicative model is preferred over the linear model. The

proposed tubularity measures V add(x, θ, r) and V prod(x, θ, r) depend on 3 variables and provide

a measure for the likelihood of finding a tubular structure at each location x with orientation

θ and with radius r, see for example Fig. 12.1.

Our tubularity measures have similarities with the popular optimally oriented flux (OOF)

filter Law & Chung (2008) and with a recently proposed invertible orientation score based

tubularity filter proposed by Chen & Cohen (2014) which we will briefly discuss below. The

OOF filter extends the image gradient flux filter, which was proposed in Bouix et al. (2005)

for centerline extraction of curvilinear structures. The image gradient flux is a scalar measure

which quantifies the amount of image gradient flowing in or out a local spherical region (with

certain radius r). The extension by Law & Chung (2008) includes orientation sensitivity and

introduces a notion of oriented flux.

Similar to the OOF filter and the Chen-Cohen (CC) method, the tubularity measures

proposed in this chapter have the property that their responses are based on highly localized

edge responses. As such, in contrast to more classical Hessian based methods (cf. Sato et al.

(1998)), the OOF, CC and the proposed tubularity measures have the advantage that they are

robust against disturbance by closely parallel structures. Finally, the new measure V prod has

several additional advantages over the OOF filter, which are as follows:

1. It allows for the selection of concave/convex curvilinear structures. I.e., it allows for

the specific detection of bright lines on a dark background, or dark lines on a bright

background.

2. It provides sharper responses at the centerlines of curilinear structures compared to the

OOF filter, due to its non-linearity.

3. It can be computed at low computational cost. Once an orientation score is computed

the tubularity measure follows from basic translation operations in each θ-plane of the

score.

In Chen & Cohen (2014) a method is proposed for simultaneous tracking of centerlines,

orientations and widths of blood vessels. Similar to our tracking methods proposed in Ch. 7, 8

and 9 tracking takes place in a higher dimensional domain. However, in addition to including
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Figure 12.1: From left to right: a test image f ; a maximum intensity projection of

the proposed tubularity measure over orientation and radius; a radius map showing in

color (see scale on the right) the radius that gave the maximum response; and on the

most right the color coded radius map on the input image.

orientation in the domain they also included radius. There, a fast marching method was used

to track vessels in a 4D domain using a potential function that has clear similarities (discussed

in Subsec. 12.2.1) with the linear measure V add proposed in this chapter. In relation to their

tubularity measure only the first two advantages of our method apply.

In Sec. 12.2 we describe the new tubularity measure (Subsec. 12.2.1), compare it to the

OOF method (Subsec. 12.2.2), and list some properties of our new method (Subsec. 12.2.3). In

Sec. 12.3 we then list some potential application areas, and show with an example that the new

tubularity measure allows for pixel wise vessel width measurement and pixel-wise artery vein

classification.

12.2 A Tubularity Measure Obtained From the

Right-Regular Representation

12.2.1 A Tubularity Measure Obtained from the Right-

Regular Representation

The Right-Regular Representation Let gη(r) ∈ SE(2) be the group element that denotes

a translation over a distance r to the left:

gη(r) := (0, r, 0). (12.1)

Then any point at a distance r to the left of a certain group element g = (x, y, θ) is obtained

by right-multiplication

Rgη(r)g = g gη(r) = (x, y, θ) (0, r, 0) = (x− r sin θ, y + r cos θ, θ),

269



12. VESSEL GEOMETRY II: PIXEL-WISE WIDTH AND A/V

where Rg denotes right-multiplication (cf. (2.39) on page 47). Similar to the left-regular

representation (Eq. (2.38)), the right regular representation given by

(Rgη(r)Uf )(g) = Uf (Rgη(r) g) = Uf (g gη(r)),

translates each orientation layer in the orientation score to the right.

A Variation of the Edge Detector A2
2Uf The second order derivative can be obtained

by a finite central difference limit:

(A2
2Uf )(g) = (A2(A2U))(g) = lim

h→0

(A2U)(g gη(h))− (A2U)(g gη(−h))

2h
, (12.2)

with A2 the vector field that differentiates in orthogonal line directions (cf. Subsec. 2.3.3), and

recall that this is a line/ridge detector. In this section however, we are interested in detecting

lines with a certain thickness/radius r. Therefore, in the sequel we propose a variation of this

line detector and we will not take this limit but instead consider h = r > 0 bounded and away

from zero. We will later refer to this variation as the additive tubularity measure. On top

of this, as vessel boundaries are symmetric around the center line, we need both edges to be

present, and we shall rely on product filtering rather than difference filtering. This tubularity

measure will be referred to as the product tubularity measure.

The definition of our tubularity measure is based on combinations of first order edge detec-

tions in orientation scores. In the subsequent sections it is therefore convenient to attach suffix
e to orientation scores objects to label them as edge encoding orientation scores. E.g. an edge

encoding orientation score Uef can be obtained via

Uef (g) := (A2(Re(Uf )))(g). (12.3)

In Sec. 2.1 of Ch. 2 we saw that the imaginary part of orientation scores constructed with cake

wavelets acts as an edge detector, and in Ch. 7 we saw that it can be directly used for tracking

of vessel edges. Since the imaginary part of orientation scores has a similar behavior as A2U

we can alternatively obtain an edge encoding orientation score via

Uef (g) = (ImUf )(g). (12.4)

In fact, this is the function on which the tubularity measure in Chen & Cohen (2014) is based.

A Linear Additive Tubularity Measure Tubular structures are characterized by oppos-

ing edges at certain orientations, and the directional derivatives perpendicular to the orientation

of the tubular structure have opposite sign at each of the edges. Consider for example the top

image in Fig. 12.2, which shows the edge encoding orientation score corresponding to the image

of Fig. 12.1. The proposed tubularity measure is based on matching left and right edges by

shifting them respectively to the right and left until they overlap, which occurs at the corre-

sponding radius r. We then define our first tubularity measure V add : SE(2)× R+ → R based

on this alignment as follows

V add(g, r) : = −(Rgη(r) U
e
f )(g) + (Rgη(−r) U

e
f )(g)

= −Ue,rf (g) + Ue,−rf (g),
(12.5)
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Figure 12.2: Illustration of the construction of tubularity measures V add(x, y, θ, r)

and V prod(x, y, θ, r) from the input image f of Fig. 12.1 at θ = π/4 and r = 25. The

edge responses encoded in U ef : SE(2)→ R are shifted towards the center center of the

tubular structure )via the right-regular representation R of the Lie group SE(2)), and

are combined using either the linear additive model or the non-linear product model.
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Figure 12.3: A comparison of tubularity measures. Top row from left to right a (x, y)-

plane of the linear additive tubularity model V add, the non-linear product tubularity

model V prod and the optimally oriented flux tubularity model V OOF for θ = π/4 and

r = 25. Bottom row from left to right the corresponding maximum intensity projections

over orientations θ and radii r.

in which we denote an orientation score shifted to the right by r using Ue,rf (g) := (Rgη(r)U
e
f )(g).

A minus sign is placed in front of the left edge to account for the difference in sign of the two

opposing edges. Thus, for an r that coincides with the actual radius of the tubular structure the

measure V add(g, r) has maximum response. For an illustration of this method see the middle

row of Fig. 12.2. Note that this model is (up to a scaling factor) equivalent to the finite central

difference model given in Eq. (12.2), but then with stepsize h = r.

In Chen & Cohen (2014) additional steps are included to construct a tubularity measure

which they used in a 4D fast marching algorithm for tubular structure segmentation. There,

each orientation plane of the edge encoding orientation score is anisotropically blurred, and

only the positive part of their equivalent of V add is used to construct the potential function.

A Non-Linear Product Based Tubularity Measure In our second tubularity model

we rely on a product rather than addition. In terms of logic, the product is often used as an

and operator, and addition as the or operator. In such terminology the additive model V add

considers only the presence of either one of the edges, whereas the product model which we

propose next strictly requires the presence of both edges.

In our next definition we assume that the tubular structures are bright lines on a dark

background, due to which the right edges have a positive sign and the left edges have a negative
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sign (cf. Fig. 12.2). The data that represents the left and right edges are then respectively

selected as follows:
left edges →

(
−Uef

)
+
,

right edges →
(
Uef

)
+
,

in which
(
Uef

)
+

(g) = max{Uef (g), 0}. For an illustration see the third image row in Fig. 12.2.

The tubularity measure V prod : SE(2) × R+ → R+ is then defined as the product of the two

edges shifted towards the center by r:

V prod(g, r) :=
(
−Rgη(r) U

e
f

)
+

(g)
(
Rgη(−r) U

e
f

)
+

(g). (12.6)

When r matches the radius of the tubular structure the edge responses coincide and V prod(g, r)

takes a large value, this is illustrated in the last row of Fig. 12.2.

12.2.2 Relation to the Optimally Oriented Flux Filter and

the Chen-Cohen Tubularity Measure

The Optimally Oriented Flux Filter In this section we only focus on the practical aspects

of the optimally oriented flux filter, and omit theoretical details. For full background and theo-

retical details we refer to the original paper by Law & Chung (2008), and refer to Benmansour

& Cohen (2011) for a theoretical and practical comparison with a Gaussian Hessian based

tubularity measure.

Our newly designed tubularity measure has a close relation to the 2D optimally oriented

flux filter, which can be defined as

ψOOFθ,r = (∂2
xGσ ? 1r)(Rθx), (12.7)

with Gσ a 2D Gaussian function with variance σ, in which ? denotes correlation, and with 1r

the indicator function of a disk of radius r. The OOF filter is thus essentially a rotated version

of a second order horizontal Gaussian derivative of the indicator function 1r of a disk of radius

r, and is visualized in Fig.12.4(a). An OOF based tubularity measure can then be obtained

from an image f via

V OOF (x, θ, r) = (ψOOFθ,r ? f)(x). (12.8)

The Filter Corresponding to the Orientation Score Based Additive Tubularity

Measure The tubularity measure proposed in (12.6) can also be directly constructed by filtering

the image with a family of filters, similar to the OOF based tubularity measure. Let ψe be the

filter that is used to construct the edge encoding orientation score Uef , e.g., let ψe = Im(ψ) be

the imaginary part of a cake wavelet. Then the shifted orientation score can be obtained as

follows

Ue,rf (g) = (Rgη(r) U
e
f )(g) = Uef (g gη(r)) = (Ug gη(r) ψ

e, f)L2(R2)

= (Ug Ugη(r) ψ
e, f)L2(R2) = (Ug ψer , f)L2(R2) = (ψeθ,r ? f)(x), (12.9)
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Figure 12.4: (a) The optimally oriented flux filter ψOOFθ,r and (b) the cake wavelet

based tubularity filter ψcakeθ,r at r = 20 pix and θ = 0.

with Ug the left-regular representation of SE(2) on R2 defined in (2.38) on page 47, recall also

that Uf (x, θ) = (U(x,θ)ψ, f)L2(R2). In Eq. (12.9) we define

ψer(x, y) := ψe(x, y − r), and

ψeθ,r(x, y) := ψe(x− r sin θ, y − r cos θ).
(12.10)

The shifted orientation score Ue,rf can thus be obtained by correlation of the image with the

shifted wavelets ψθ,r. Thus, similar to the OOF based tubularity model, the additive tubularity

model V add can also be obtained by linear filtering via

V add(g, r) = −(Rgη(r) U
e
f )(g) + (Rgη(−r) U

e
f )(g) = ((−ψeθ,r + ψeθ,−r) ? f)(x)

= (ψcakeθ,r ? f)(x),
(12.11)

with ψcakeθ,r the corresponding linear cake wavelet based tubularity filter, visualized in Fig. 12.4(b),

and given by

ψcakeθ,r = −ψeθ,r + ψeθ,−r. (12.12)

12.2.3 Some Properties of the New Tubularity Measure

Both ψOOFθ,r and ψcakeθ,r depicted in Fig. 12.4 concentrate around edges at a certain distance r

from the centerline. A main difference with our orientation score based approach is that the

OOF filter includes curvature (with radius r) in the edge detection, with opposing curvature-

sign at each edge. This is remarkable, as one would assume the edges of tubular structures

to be more or less parallel, with approximately equal curvature on each side of the curvilinear

structure. The cake wavelet based tubularity measure is based on the same parameters as

used for construction of orientation scores, which makes the measure flexible and tuneable for

different applications. For example, the angular sensitivity sθ of the filter is controlled by the

amount of angular spread of the ”piece of cake” in the Fourier domain, see e.g. Fig. 2.4 on page

29, and its scale (or coarseness) can be controlled by the inflection point of the radial envelope
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in the Fourier domain, see e.g. Fig. 2.3 on page 26. Note here that instead of blurring the

orientation planes of the orientation scores, as is done in the Chen-Cohen method, we prefer to

tune this scale parameter instead.

Two crucial differences should be observed when comparing the correlation based con-

struction of V add (Eq. (12.11)) and V OOF (Eq. (12.8)) with the construction of the non-linear

measure V prod (Eq. (12.6)):

1. Due to both phase selection via (·)+ and the multiplication of edge responses in the

construction of V prod via Eq. (12.6), the proposed method is highly non-linear. This

has the advantage of sharp responses and high contrast at center line locations, see

e.g., Fig. 12.3. Additonally, this means that the measure can not be constructed via

correlations of the image with a family of filters, which is possible with V add and V OOF .

This is however not a disadvantage due to computational efficiency of the orientation

score approach, as we discuss next.

2. The left and right edge encoding orientation scores
(
−Uef

)
+

and
(
Uef

)
+

only have to

be computed once, and can then be used to obtain the filter response V prod for any r

by a basic translation of each orientation plane in the edge encoding scores. In contrast

to a linear filtering approach, in which the filter size and thus the computational cost

increases with r, the computational cost of the translations are independent of r.

12.3 Applications of the Tubularity Measure

12.3.1 New Biomarkers

In the previous chapter (Ch. 11) we saw that we can construct 2D- (and SE(2)-) feature maps

such as orientation confidence s and curvature κ via the analysis of orientation scores. These

feature maps were then used to construct weighted histograms and new biomarker definitions

based on the weighted average or standard deviation of the pixel-wise curvature measurements.

For any arbitrary feature map f : R2 → R, and any confidence measure s : R2 → R+, weighted

averages and weighted standard deviations can be computed as follows:

µf =

∫∞
−∞ f(x)s(x)dx∫∞
−∞ s(x)dx

, σf =

√√√√∫∞−∞(f(x)− µf )2s(x)dx∫∞
−∞ s(x)dx

. (12.13)

In Ch. 11 we computed such biomarkers using the following two feature maps:

Orientation Confidence: so(x),

Curvature: κ(x),
(12.14)

with so and κ defined in Eq. (11.7). There we also showed that such a weighted average approach

to computing average feature values was more stable than binary weighting of feature values

(Subsec. 11.4.2). We also showed there that our approach to the computation of curvature
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values via the analysis of orientation scores was more stable when compared to a classical

approach in which these were computed from segmentations.

Now, using any tubularity measure V : SE(2) × R+ → R we can expand our 2D feature

map toolset, and add the following features:

Tubularity Confidence: st(x) = max
θ∈S1,r∈R+

V (x, θ, r),

Orientation: θ∗(x) = argmax
θ∈S1

max
r∈R+

V (x, θ, r),

Radius: r∗(x) = argmax
r∈R+

max
θ∈S1

V (x, θ, r).

(12.15)

Furthermore, to each vessel we can also assign a vessel confidence measure using the vessel

enhancement techniques discussed in Ch. 6, yielding:

Vessel Confidence: sv(x). (12.16)

Finally, as we will show in the next example it is possible to use the tubularity based feature

maps to also asign to each pixel in the image a confidence measure for it belonging to an artery

or a vein, resulting in the following feature maps:

Artery Confidence: sartery(x),

Vein Confidence: svein(x).
(12.17)

Example 6. Instead of using the edge tracking method developed in Ch. 7, which generated at

each iteration k a left and right vessel edge point uk and vk (recall Fig. 7.4 on page 161), we

can now directly compute for each location x in the image the vessel edge points via

u(x) = x + (−r∗(x) sin θ∗(x) , r∗(x) cos θ∗(x) )

v(x) = x− (−r∗(x) sin θ∗(x) , r∗(x) cos θ∗(x) ) ,
(12.18)

with the radius map r∗ and orientation map θ∗ defined in Eq. (12.15). From these edge points

it is then possible to construct cross-sectional intensity profiles (recall Fig. 10.1 on page 243).

Subsequently, the same Bayesian approach as used in Ch. 10 can then be used to assign to

each profile at each location x a likelihood of it being part of an artery or a vein, for details see

Ch. 10. Some results of this pixel-wise artery/vein probability assignment approach are depicted

in Fig. 12.5.

The above described set of feature maps allows for a wide range of new biomarker defini-

tions, and in future work we aim to explore such new biomarkers in the analysis of the retinal

vasculature in association with disease progression. In Ch. 11 (in particular in Subsec. 11.5.3)

we for example saw that it is very relevant to make a distinction between arteries and veins

when analyzing geometrical features of the vasculature. In that analysis we for example defined

µvess,artery|κ| =

∫∞
−∞ |κ(x)|s(x)dx∫∞
−∞ s(x)dx

, with s(x) = so(x)sartery(x), (12.19)

where in that analysis the artery confidence maps sartery were constructed from manual label-

ings. With the tools described in this chapter we will now be able to compute such biomarkers
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Figure 12.5: Pixel-wise artery/vein probabilities computed on three images of the

publicly available INSPIRE-AVR dataset Niemeijer et al. (2011). Left column: the in-

put images. Right column: the artery/vein probablities as computed using the method

described in Example 6. A color RGB image was constructed in which a red chan-

nel so(x)sartery(x) and a blue channel so(x)svein(x) were added to the original green

channel of the image.
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fully automatically ! This opens doors for (very) large scale clinical studies, using stable (prob-

abilistic) biomarkers obtained via the analysis orientation scores.

12.3.2 Vessel Tracking and Connectivity Analysis

Vessel Tracking in Extended Domains In this thesis we considered the analysis and pro-

cessing of images by extending the domain with an orientation dimension in an invertible

orientation score. One of the main applications was robust vessel center line extraction via the

extraction of sub-Riemannian geodesics in the extended domain of positions and orientations.

In other methods for tracking of curvilinear and tubular structures the domain was extended

with a radius dimension and tracking was performed on the 3D space of positions and radii Li

& Yezzi (2007); Benmansour & Cohen (2011); Chen et al. (2016). The idea of tracking tubular

structures in a domain extended with a radius dimension was first proposed by Li & Yezzi

(2007) and three different (application specific) isotropic metrics on this space were proposed.

In Benmansour & Cohen (2011) this approach was later adapted for anisotropic metrics which

were constructed using the optimally oriented flux filter Law & Chung (2008). In Chen &

Cohen (2014); Péchaud et al. (2009b) tracking was performed on a domain extended with both

an orientation and a radius dimension.

The type of tracking methods discussed above are now also possible with the tubularity

measure developed in this chapter. It is worth mentioning, however, that in non of the above

cases a sub-Riemannian geometry was employed. An interesting extension of the fast marching

approach developed in Ch. 8 would therefore be to construct a 4D (position, orientation, radius)

metric tensor which can be described by the following matrix:

Mε,tube(γtube(t)) =
1

V prod(γtube(t))
2

 Mε(PSE(2)γtube(t))

0

0

0

0 0 0 ξ2
4

 , (12.20)

with γtube(t) = (x(t), y(t), θ(t), r(t)) ∈ SE(2)× R1 the curve in the extended four dimensional

domain, with PSE(2)γtube(t) = (x(t), y(t), θ(t)) ∈ SE(2) its projection to SE(2), with Mε the

approximate sub-Riemannian metric tensor on SE(2) defined in Ch. 4 in Eq. (4.11) on page

83, and in which the metric is scaled with the tubularity measure V prod defined in Eq. (12.6).

In this new metric the radius dimension is uncoupled from the SE(2) part, and changes in this

direction are scaled with ξ4. A fast marching approach that employs this metric would directly

track data-adaptive horizontal curves (cf. Subsec. 4.2.3) in which change in radius is penalized,

and in which curvature is penalized by the approximate sub-Riemannian metric.

Connectivity Analysis In vessel clustering and connectivity analysis in retinal imaging,

features like vessel caliber, orientation and curvature are often used to match and disentangle

blood vessels at crossings and bifurcations. In this thesis for example orientation and vessel

radius information was used for junction resolving in full vasculature tracking (Subsec. 7.4.1.5

in Ch. 7), see (Bekkers, 2012, App. A) for more details. In Favali & Abbasi-Sureshjani et al.
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(2016) both orientation and pixel intensity consistency were used in a spectral clustering method

based on the Fokker-Plank equation (incorporating the sub-Riemannian geometry). In Abbasi-

Sureshjani and Favali et al. (2016) this spectral clustering method was then extended to clus-

tering of points in a space of positions, orientation, curvature and intensity. In Chen & Cohen

(2015) optimal vessel paths were found using an anisotropic 2D Riemannian metric in which

color consistency was incorporated to deal with the problem of crossing and nearby vessels of a

different artery-vein type. In all of the above intensity consistency was used as a useful feature

in connectivity analysis. However, along a vessel the pixel intensities might vary significantly,

especially in the presence of vessel central light reflection. A more stable feature instead of

pixel intensity could be the pixel-wise artery/vein classification, e.g., using the feature map

sartery(x) instead of pixel intensity f(x).

12.4 Conclusion

In the final chapter of this thesis we have proposed a new tubularity measure (Sec. 12.2) and

have shown that it can be used to compute new-pixel wise vessel measurements such as vessel

width and artery/vein labeling. In Sec. 12.3 we explored new types of retinal image analyses

(and extensions of the methods developed in this thesis) that are made possible by considering

the analysis of tubularity measures and the feature maps that can be computed from them.

Both in vessel tracking and in connectivity analyses the tools presented in this chapter can be

most helpful and will be pursued in future work. Motivated by the results of Ch. 11 in which the

clinical analyses of biomarkers in population studies showed that it is relevant to consider artery

or vein specific features, the main focus of future work will be on the computation and analysis

of a wide range of new (artery/vein specific) biomarkers that can now be fully automatically

computed.
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Appendix A

Retinal Landmark Detection

A.1 The Smoothing Regularization Matrix R

When expanding the templates t and T in a finite B-spline basis (Sec. 5.2 and 5.3 of Ch. 5), the

energy functionals (5.6), (5.10), (5.27) and (5.29) of Ch. 5 can be expressed in matrix-vector

form. The following theorems summarize how to compute the matrix R, which encodes the

smoothing prior, for respectively the R2 and SE(2) case.

Lemma 1. The discrete smoothing regularization-term of energy functional (5.6) can be ex-

pressed directly in the B-spline coefficients c as follows∫∫
R2

‖∇t(x, y)‖2dxdy = c†Rc, (A.1)

with c given by Eq. (5.15) of Ch. 5, and with

R = Rk
x ⊗Rl

x + Rk
y ⊗Rl

y, (A.2)

a [NkNl ×NkNl] matrix. The elements of the matrices in (A.2) are given by

Rk
x(k, k′) = − 1

sk
∂2B2n+1

∂x2 (k′ − k)

Rl
x(l, l′) = slB

2n+1(l′ − l),
Rk
y(k, k′) = skB

2n+1(k′ − k),

Rl
y(l, l′) = − 1

sl
∂2B2n+1

∂y2 (l′ − l).

(A.3)

Proof. For the sake of readability we divide the regularization-term in two parts:∫∫
R2‖∇t(x, y)‖2dxdy =

∫∫
R2

∣∣ ∂t
∂x (x, y)

∣∣2 +
∣∣∣ ∂t∂y (x, y)

∣∣∣2 dxdy

= Rx +Ry,
(A.4)

where
Rx =

∫∫
R2

∣∣ ∂t
∂x (x, y)

∣∣2 dxdy, and

Ry =
∫∫

R2

∣∣∣ ∂t∂y (x, y)
∣∣∣2 dxdy.
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We first derive the matrix-vector representation of Rx as follows:

Rx =
∫∫

R2

∣∣ ∂t
∂x (x, y)

∣∣2 dxdy

=
Nk∑

k,k′=1

Nl∑
l,l′=1

∫∫
R2 ck,l

∂Bn

∂x ( xsk − k)Bn( ysl − l)

ck,l
∂Bn

∂x ( xsk − k
′)Bn( ysl − l

′)dxdy

=
Nk∑

k,k′=1

Nl∑
l,l′=1

ck,lck′,l′[
∞∫
−∞

∂Bn

∂x ( xsk − k)∂B
n

∂x ( xsk − k
′)dx

]
[
∞∫
−∞

Bn( ysl − l)B
n( ysl − l

′)dy

]
1
=

Nk∑
k,k′=1

Nl∑
l,l′=1

ck,lck′,l′
[

1
sk

(
∂Bn

∂x ∗
∂Bn

∂x

)
(k′ − k)

]
[sl (B

n ∗Bn) (l′ − l)]
2
=

M∑
k,k′=1

N∑
l,l′=1

ck,lck′,l′
[

1
sk
∂2B2n+1

∂x2 (k′ − k)
]

[
slB

2n+1(l′ − l)
]

= c†(Rk
x ⊗Rl

x)c.

(A.5)

Here the following properties are used:

1. The integrals of shifted B-splines can be expressed as convolutions:∫ ∞
−∞

∂Bn

∂x

(
x

sk
− k
)
∂Bn

∂x

(
x

sk
− k′

)
dx

= − 1

sk

∫ ∞
−∞

∂Bn

∂u
(u)

∂Bn

∂u
((k′ − k)− u)du = − 1

sk

(
∂Bn

∂u
∗ ∂B

n

∂u

)
(k′ − k).

This is easily verified by substitution of integration variable (u = − x
sk

+ k) and noting

that Bn(x) = Bn(−x) and ∂Bn

∂x (x) = −∂B
n

∂x (−x).

2. Convolution of two B-splines Bn of order n yields:

Bn ∗Bn = B2n+1.

The elements of the matrices Rky and Rly are derived in a similar manner.

As a result of Lemma 1 we can state the following.

Corollary 1. Let V = span{Bnk,l}, with k = 1, . . . , Nk, l = 1, . . . , Nl, and shifted B-splines

Bnk,l of order n. Let the energy function EBlin : RNkNl → R+ be given by Eq. (5.12) of Ch. 5.

Then the optimal continuous template of the constrained optimization problem (cf. Eq. (5.6) of

Ch. 5)

t∗ = argmin
t∈V

Elin(t)
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has coefficients c∗ w.r.t. the B-spline basis for V , that are the unique solution of

∇cE
B
lin(c∗) = 0,

which boils down to Eq. (5.13) of Ch. 5.

Lemma 2. The discrete regularization-term of energy functional (5.27) of Ch. 5 can be ex-

pressed directly in the B-spline coefficients:∫∫∫
SE(2)

‖∇T‖D dxdydθ = cT (D11R1 +D22R2 +D33R3)c. (A.6)

Matrix R1 is given by

R1 =
(
RIx

1 ⊗RIy
1 ⊗RIθ

1

)
+
(
RIIx

1 ⊗RIIy
1 ⊗RIIθ

1

)
+
(
RIIIx

1 ⊗RIIIy
1 ⊗RIIIθ

1

)
+
(
RIV x

1 ⊗RIV y
1 ⊗RIV θ

1

)
(A.7)

with the elements of the matrices used in the Kronecker products given by

RIx
1 (k, k′) = − 1

sk
∂2B2n+1

∂x2 (k′ − k),

RIy
1 (l, l′) = slB

2n+1(l′ − l),

RIθ
1 (m,m′) =

π∫
0

cos2(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ,

(A.8)

RIIx
1 (k, k′) = −RIIIx

1 (k, k′) = ∂B2n+1

∂x (k′ − k),

RIIy
1 (l, l′) = −RIIIy

1 (l, l′) = −∂B
2n+1

∂y (l′ − l),

RIIθ
1 (m,m′) = RIIIθ

1 (m,m′) =
π∫
0

cos(θ) sin(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ,

(A.9)

RIV x
1 (k, k′) = skB

2n+1(k′ − k),

RIV y
1 (l, l′) = − 1

sl
∂2B2n+1

∂y2 (l′ − l),

RIV θ
1 (m,m′) =

π∫
0

sin2(θ)Bn( θ
sm
−m)Bn( θ

sm
−m′)dθ.

(A.10)

Matrix R2 is given by

R2 =
(
RIIx

1 ⊗RIIy
1 ⊗RIV θ

1

)
−
(
RIIx

1 ⊗RIIy
1 ⊗RIIθ

1

)
−
(
RIIIx

1 ⊗RIIIy
1 ⊗RIIIθ

1

)
+
(
RIV x

1 ⊗RIV y
1 ⊗RIθ

1

)
. (A.11)

Matrix R3 is given by

R3 =
(
Rx

3 ⊗Ry
3 ⊗Rθ

3

)
, (A.12)

with the elements of the matrices given by

Rx
3(k, k′) = skB

2n+1(k′ − k),

Ry
3(l, l′) = slB

2n+1(l′ − l),
Rθ

3(m,m′) = − 1
sm

∂2B2n+1

∂θ2 (m′ −m).

(A.13)
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Proof. The proof of Lemma 2 follows the same steps as in the proof of Lemma 1, only here

left-invariant derivatives are used. The four separate terms I − IV of Eq. (A.7) arise from the

left invariant derivative A1: |A1T |2 =
∣∣∣cos(θ)∂T∂x + sin(θ)∂T∂y

∣∣∣2.

Corollary 2. Let V = span{Bnk,l,m}, with k = 1, . . . , Nk, l = 1, . . . , Nl,m = 1, . . . , Nm, and

shifted B-splines Bnk,l,m of order n. Let the energy function EBlin : RNkNlNm → R+ be given by

EBlin(c) =
1

N
‖Sc− y‖2 + c†(λR + µI)c

With S and y given by (5.32) of Ch. 5 and with R = D11R1 + D22R2 + D33R3 given in

Lemma 2. Then the optimal continuous template of the constrained optimization problem (cf.

Eq. (5.27) of Ch. 5)

T ∗ = argmin
T∈V

Elin(T )

has coefficients c∗ w.r.t. the B-spline basis for V that are the unique solution of

∇cEBlin(c∗) = 0.

This boils down to Eq. (5.13) of Ch. 5, but then on RNkNlNm .

A.2 Normalized Cross Correlation

In most applications it is necessary to make the detection system invariant to local contrast

and luminosity changes. In our template matching framework this can either be achieved via

certain pre-processing steps that filter out these variations, or by means of normalized cross-

correlation. In normalized cross-correlation, both the template as well as the image are (locally)

normalized to zero mean and unit standard deviation (with respect to the inner product used

in the cross-correlations). In this section, we explain the necessary adaptations to extend the

standard cross-correlation based framework to normalized cross-correlations.

A.2.1 Normalized Cross-Correlation in R2

In the usual cross-correlation based template matching approach, as described in Sec. 5.2 of

Ch. 5, we rely on the standard L2(R2) inner product. In normalized cross-correlation it is

however convenient to extend this inner product to include a windowing function m which

indicates the relevant region (support) of the template. As such, the inner product with respect

to windowing function m is given by

(t, f)L2(R2,mdx̃) :=

∫
R2

t(x̃)f(x̃)m(x̃)dx̃, (A.14)

with associated norm ‖·‖L2(R2,mdx̃) =
√

(·, ·)L2(R2,mdx̃). The windowing function has to be a

smooth function m : R2 → R+ with
∫
R2 m(x̃)dx̃ = 1. In this work, the use of a window m
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is also convenient to deal with boundary conditions in the optimization problems for template

construction. We define

m(x) := ς e−
‖x‖2
s

n∑
i=0

(‖x‖2/s)i

i!
, (A.15)

which smoothly approximates the indicator function 1[0,r](‖x‖), covering a disk with radius r,

when setting s = 2r2

1+2n , see e.g. (Bekkers et al., 2014a, Fig. 2). The constant ς normalizes the

function such that
∫
R2 m(x̃)dx̃ = 1.

In normalized cross-correlation the image is locally normalized (at position x) to zero mean

and unit standard deviation, which is done as follows

f̂x(x̃) :=
f(x̃)− 〈f〉Txm

‖f(x̃)− 〈f〉Txm‖L2(R2,Txmdx̃)
, (A.16)

with local mean 〈f〉m = (1, f)L2(R2,mdx̃). Template t̂ can be obtained via normalization of a

given template t via

t̂(x̃) :=
t(x̃)− 〈t〉m

‖t(x̃)− 〈t〉m‖L2(R2,mdx̃)
. (A.17)

Template matching is then done in the usual way (via (5.3) of Ch. 5), however now t̂ and

f̂x are used instead of t and f . In fact, the entire R2 cross-correlation template matching and

template optimization framework is extended to normalized cross-correlation by substituting all

instances of t with t̂, f with f̂x, and (·, ·)L2(R2) with (·, ·)L2(R2,mdx̃). However, since templates

t̂ are directly constructed via the minimization of energy functionals, we will not explictely

normalize the templates, unless they are obtained by other methods. E.g., Eq. (A.17) is used in

the main chapter to construct basic templates obtained by averaging positive object patches.

A.2.2 Normalized Cross-Correlation in SE(2)

Similar to the R2 case, templates and orientation scores are locally normalized to zero mean

and unit standard deviation, however, now with respect to the L2(SE(2),Mdg̃) inner product,

which is given by

(T,Uf )L2(SE(2),Mdg̃) :=

∫
R2

∫ 2π

0

T (x̃, θ̃)Uf (x̃, θ̃)M(x̃, θ̃)dx̃dθ̃, (A.18)

with norm ‖·‖L2(SE(2),Mdg̃) =
√

(·, ·)L2(SE(2),Mdg̃). Also here windowing function M indicates

the support of the template, and has the property
∫
R2

∫ 2π

0
M(x̃, θ̃)dx̃dθ̃ = 1. We define

M(x, θ) :=
1

2π
m(x), (A.19)

independent of θ, with m(x) given by (A.15), and with front factor 1
2π such that it integrates

to 1.
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The (locally at g) normalized orientation score and template T are then given by

Ûf,g(x̃, θ̃) :=
Uf (x̃, θ̃)− 〈Uf 〉LgM

‖Uf (x̃, θ̃)− 〈Uf 〉LgM‖L2(SE(2),LgMdg̃)

, (A.20)

T̂ (x̃, θ̃) :=
T (x̃, θ̃)− 〈T 〉M

‖T (x̃, θ̃)− 〈T 〉M‖L2(SE(2),Mdg̃)

, (A.21)

with mean 〈Uf 〉M = (1, Uf )L2(SE(2),Mdg̃)).

A.2.3 Efficient Local Normalization of f̂x and Ûf,g.

Since the normalized image f̂x depends on the location x it needs to be calculated for every

translation of the template, which makes normalized cross-correlation computationally expen-

sive. Therefore, (A.16) can be approximated by assuming that the local average is approx-

imately constant in the area covered by m. That is, assuming 〈f〉Txm(x̃) ≈ 〈f〉Tx̃m(x̃) =

(m ? f)(x̃) for ‖x̃− x‖ < r, with r the radius that determines the extent of m, (A.16) is ap-

proximated as follows:

f̂x(x̃) ≈
f(x̃)− (m ? f)(x̃)√

(m ? (f − (m ? f))2)(x̃)
. (A.22)

Similarly, in the SE(2)-case (A.20) can be approximated via

Ûf,g(x̃, θ̃) ≈
Uf (x̃, θ̃)− (M ?SE(2) Uf )(x, θ̃)√

(M ?SE(2) (Uf − (M ?SE(2) Uf ))2)(x, θ̃)
. (A.23)

A.2.4 Including a Region of Interest Mask

Depending on the application, large portions of the image might be masked out. This for

example is the case in retinal images (see circular masks in Fig. 5.7). To deal with this,

template matching is only performed inside the region of interest defined by a mask image

mroi : R2 → {0, 1}. Including such a mask is important in normalized template matching, and

can be done by replacing the standard inner products by

(t, f)roiL2(R2,m,dx̃) :=
(t, fmroi)L2(R2,m,dx̃)

(1,mroi)L2(R2,m,dx̃)
, (A.24)

(T,Uf )roiL2(SE(2),M,dg̃) :=
(T,UfM

roi)L2(SE(2),M,dg̃)

(1,Mroi)L2(SE(2),M,dg̃)
, (A.25)

with Mroi(x, θ) = mroi(x).
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Table A.1: Average processing times. For optic nerve head detection (ONH) the aver-

age is taken over 1529 images of the TC, MESSIDOR, DRIVE and STARE database.

For fovea detection the average is taken over 1408 images of the TC and MESSIDOR

database. For pupil detection the average is taken over 1521 images of the BioID

database.

ONH Fovea Pupil (left & right)

R2 SE(2) R2 SE(2) R2 SE(2)

Timings (ms)

1. Rescaling 106 106 111 111 0 0

2. R2-Processing 66 66 64 64 71 71

3. OS Transform 0 108 0 108 0 121

4. SE(2)-Processing 0 5 0 5 0 6

5. Template Matching 20 195 19 190 26 116

Total 192 479 195 477 97 313

Combined Total Timings (ms) - R2 and SE(2)

497 501 420

Combined Total Timings (ms) - Fovea and ONH

730

A.3 Additional Details on the Detection Prob-

lems

In this section we describe additional details about the implementation and results of the three

detection problems discussed in Ch. 5.

A.3.1 Processing Pipeline, Settings and Timings

A.3.1.1 Processing Pipeline

In all three applications the same processing pipeline was used. The pipeline can be divided

into the following 5 steps:

1. Resizing. Each input image is resized to a certain operating resolution and cropped to

remove large regions with value 0 (outside the field of view mask in retinal images, see

e.g. Fig. 5.7). The retinal images are resized such that the pixel size was approximately

40µm/pix. In the pupil detection application no rescaling or cropping was done.
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2. R2-Processing. In all three applications we applied a local intensity and contrast nor-

malization step using an adaptation of Foracchia et al. (2005) which we explain below.

The locally normalized image f̂ is then mapped through an error function via erf(8f̂) to

suppress outliers.

3. Orientation score transform. The processed image is then taken as input for an orien-

tation score transform. For the oriented wavelets we used cake wavelets Bekkers et al.

(2014a); Duits et al. (2007b) of size [51×51] and with angular resolution sθ = π/12, and

with sampling θ from 0 to π.

4. SE(2)-Processing. For phase-invariant, nonlinear, left-invariant Duits & Franken (2010a),

and contractive Bruna & Mallat (2013) processing on SE(2), we work with the modu-

lus of the complex valued orientation scores rather than with the complex-valued scores

themselves (taking the modulus of quadrature filter responses is an effective technique

for line detection, see e.g. Freeman et al. Freeman & Adelson (1991)).

5. Template Matching. Finally we perform template matching using respectively Eqs. (5.2),(5.3)

and (5.4) for the R2 case and Eqs. (5.2),(5.23) and (5.24) of Ch. 5 for the SE(2) case.

Regarding the image resolutions (step 1) we note that the average image size after rescaling

was [300× 300]. The average image resolutions in each database were as follows:

• ES (SLO) contained images of average resolution 13.9µm/pix.

• TC contained images of average resolution 9.4µm/pix.

• MESSIDOR contained images of 3 cameras with average resolutions 13.6µm/pix, 9.1µm/pix

and 8.6µm/pix.

• DRIVE contained images of average resolution 21.9µm/pix.

• STARE contained images of average resolution 17.6µm/pix.

Regarding local image normalization (step 2) we note the following. Local image normal-

ization was done using an adaptation of Foracchia et al. (2005). The method first computes a

local average and standard deviation of pixel intensities, and the image is locally normalized to

zero mean and unit standard deviation. This is done via Eq. (A.22). Then a background mask

is construct by setting pixels with a larger distance than 1 standard deviation to the average

(Mahalanobis distance) to 0, and other pixels to 1. This mask is then used to ignore outliers

in a second computation of the local average and standard deviation. The final normalized

image is again computed via Eq. (A.22) but now with the inclusion of the background mask,

see Eq. (A.24).

A.3.1.2 Template Settings

In the retinal applications we used R2 templates of size [Nx × Ny] = [251 × 251] which were

covered by a grid of B-spline basis functions of size [Nk ×Nl] = [51× 51], the SE(2) templates
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were of size [Nx × Ny × Nθ] = [251 × 251 × 12] and were covered by a grid of B-spline basis

functions of size [Nk ×Nl ×Nm] = [51× 51× 12].

In the pupil detection application we used R2 templates of size [Nx × Ny] = [101 × 101]

which were also covered by a grid of B-spline basis functions of size [Nk ×Nl] = [51× 51], the

SE(2) templates were of size [Nx × Ny × Nθ] = [101 × 101 × 12] and were also covered by a

grid of B-spline basis functions of size [Nk ×Nl ×Nm] = [51× 51× 12].

A.3.1.3 Timings

We computed the average time for detecting one (or two) object(s) in an image and tabulated

the results in Tab. A.1. Here we sub-divided the timings into the 5 processing steps explained

in Subsec. A.3.1.1. The average (full) processing time on the retinal images was in both ap-

plications approximately 500ms. When both the ONH and fovea are detected by the same

processing pipeline the processing took 730ms. For pupil detection the average time to detect

both the left and right pupil on the full images was 420ms.

The retinal images were on average of size [1230×1792], and [300×300] after cropping and

resizing. The images in the pupil detection application were not resized or cropped and were

of size [286× 384].

All experiments were performed using Wolfram Mathematica 10.4, on a computer with an

Intel Core i703612QM CPU and 8GB memory. Here we note that in the retinal image datasets

the maximum template response always occurs at rotation α = 0, so for the sake of reduced

computation time we have set PSE(2)(x) := P̃SE(2)(x, 0) instead of Eq. (5.22) of Ch. 5. In the

pupil detection application we also make this assumption, however, we remark that detection

performance could slightly be improved with the inclusion of a certain search range for α. (see

also Subsec. 5.5.4.3).
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Appendix B

Vessel Tracking Part I: Iterative

Tracking via Local Optimization

This appendix is based on joint work with Remco Duits, Tos Berendschot, and Bart ter Haar

Romeny, cf. Bekkers et al. (2014a), and provides a mathematical underpinning of our method

for vessel tracking via local optimization in transversal tangent planes in SE(2), as described

in Ch. 7. Here, in particular Remco Duits is gratefully acknowledged for his theoretical contri-

butions.

B.1 A Mathematical Underpinning of Optimiza-

tion in the Tangent Planes V

B.1.1 Geometrical Principle Behind the ETOS-algorithm

The ETOS-algorithm presented in Section 7.3.1.1 heavily relies on local optimization in each

transversal 2D-tangent plane V = span{A2,A3} spanned by A2 = − sin θ∂x + cos θ∂y and

A3 = ∂θ in tangent-bundle T (SE(2)).

To this end we recall Fig. 7.3 where one can observe that each tangent vector to the lifted

curve s 7→ (x(s), y(s), θ(s)) with θ(s) = arg(ẋ(s) + iẏ(s)) (e.g. the curve following the right

edge of a blood vessel) in SE(2) is pointing orthogonal to a plane V (plotted in yellow). Within

V we see that the maximum values of the absolute value of the imaginary part of the score is

located at the origin of the yellow plane in the tangent space.

Definition 2. A smooth curve s 7→ γ(s) = (x(s), y(s), θ(s)) in SE(2) is called the lifted curve

of a smooth planar curve iff for all s ∈ [0, `] we have θ(s) = arg(ẋ(s) + i ẏ(s)).

Definition 3. If a curve γ is equal to the lift of its spatial projection (i.e. if its satisfies

Eq. (B.1)) it is called horizontal.

293



B. VESSEL TRACKING PART I: ITERATIVE TRACKING VIA
LOCAL OPTIMIZATION

Tangent vectors to horizontal curves always lay in the tangent plane ∆ = span{A1,A3},
spanned by A1 and A3, since one has

θ(s) = arg(ẋ(s) + iẏ(s)) ⇔ γ̇(s) ∈ span{A1|γ(s) , A3|γ(t)} = ∆|γ(t) . (B.1)

In this appendix we will underpin and discuss our fundamental venture point: The most salient

curves in the smooth imaginary part/real part/absolute value C : SE(2) → R of the smooth

orientation score U : SE(2)→ C are given by

γ is horizontal such that (A3|γ C)(γ) = 0 and (A2|γ C)(γ) = 0.

The intuitive idea behind this is as follows. Let C : SE(2) 7→ R+ denote an a priori given cost.

Now, if a horizontal curve s 7→ γ(s) := (x(s), θ(s)) satisfies

(A2C)(x(s), θ(s)) = (− sin θ(s)∂xC + cos θ∂yC)(x(s), θ(s))

= (A3C)(x(s), θ(s)) = 0
(B.2)

with A2
2C(x(s), θ(s)) < 0 and A2

3C(x(s), θ(s)) < 0, then there is no gain in moving1 the curve

s 7→ γ(s) = (x(s), θ(s)) in directions orthogonal to the spatial propagation vector A1|γ(s) =

cos θ(s)∂x + sin θ(s)∂y.

In fact, we expect the curve γ(s) = (x(s), θ(s)) satisfying (B.2) to be optimal in some sense

within the sub-Riemannian manifold

M = (SE(2),∆,Gξ,C=1
0 )

with metric tensor Gξ,C=1
0 : SE(2)×∆×∆→ R given by

Gξ,C=1
0

∣∣∣
(x,y,θ)

= dθ ⊗ dθ + ξ2(cos θdx+sin θdy)⊗ (cos θdx+sin θdy), (B.3)

where ⊗ denotes the tensor product. Note that this metric tensor is the same as the sub-

Riemannian metric tensor Gξ,C0 defined in (4.7), but without an external cost, i.e., C = 1 (not

to be confused with C). Note also that

(cos θdx+ sin θdy)(γ̇(s)) = ẋ(s) cos θ(s) + ẏ(s) sin θ(s)

⇒
Gξ,C=1

0 (γ̇(s), γ̇(s)) = ξ2| cos θ(s)ẋ(s) + sin θ(s)ẏ(s)|2 + |θ̇(s)|2 .

If s equals arclength (i.e. we have ‖ẋ(s)‖2 = 1) of the spatial part s 7→ x(s) = (x(s), y(s)) of

the horizontal curve s 7→ γ(s) = (x(s), θ(s)) we have κ2(s) = |θ̇(s)|2, so that

‖γ̇(s)‖ =

√
Gξ,C=1

0 (γ̇(s), γ̇(s)) =
√
κ2(s) + ξ2. (B.4)

Intuitively, such a sub-Riemannian manifold M equals the group SE(2) where one restricts

oneself to horizontal curves with a constant relative penalty for bending and stretching deter-

mined by ξ > 0 which has physical dimension one over length.

For special cases of C we can show that our geometrical principle for local optimality indeed

produces optimal curves in SE(2), as we will show in the subsequent section.

1In such a way that the perturbed curve is again horizontal.
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B.1.2 Application of the Geometrical Principle to Com-

pletion Fields

In general the real part, imaginary part, or absolute value of an orientation score is a complicated

function on SE(2). Therefore we will consider the case where C : SE(2) → R+ is a so-called

“completion field” August (2001); August & Zucker (2003); Thornber & Williams (1996, 2000);

Zweck & Williams (2004). This corresponds to collision probability densities of a source particle

g1 ∈ SE(2) and a sink particle g2 ∈ SE(2).

There exist remarkable relations Duits & Franken (2010b); Duits & Van Almsick (2008)

between optimal curves (i.e. curves minimizing an optimal control problem on SE(2)) and

solutions of Eq. (B.2) for special cases where C denotes a so-called completion distribution (or

“completion field”). Given two sources at the origin g1 = (0, 0, 0) and at g2 = (x1, y1, θ1), such

completion fields are defined as products of resolvent Green’s functions of stochastic processes

for contour completion Mumford (1994) and contour enhancement Citti & Sarti (2006); Duits

& Franken (2010a) in SE(2):

C(g) := λ2 ·Rλ(g−1
1 g)Rλ,∗(g

−1
2 g), (B.5)

where Rλ(g) denotes the probability density of finding a random walker g in the underlying

stochastic process Duits & Franken (2010a); Mumford (1994) given that it started at g =

(x, y, θ) = (0, 0, 0) regardless its memoryless traveling time T which is negatively exponentially

distributed with expectation E(T ) = λ−1. Furthermore, g 7→ Rλ,∗(g) denotes the adjoint

resolvent kernel (i.e. the resolvent that arises by taking the adjoint of the generator (Duits &

Van Almsick, 2008, ch:4.4).

Exact formulas for the resolvent Green’s function Rλ for contour enhancement can be

found in Duits & Franken (2010a), whereas exact formulae for resolvent kernels Rλ for contour

completion (direction process) can be found in Duits & Van Almsick (2008). In both cases there

are representations involving 4 Mathieu functions. For a visual impression of exact Green’s

functions see Fig. 5.3 on page 112 and Fig. B.1 (where in dashed lines we have depicted level

sets of the corresponding Heisenberg approximations that we will discuss and employ in the

next subsection).

These completion fields relate to the well-known Brownian bridges (in probability theory)

where the traveling time is integrated out. This relation is relevant, since it is known that such

Brownian bridges concentrate on geodesics Wittich (2005).

If Gt : SE(2) → R+ denotes the time dependent Green’s function of the Fokker-Planck

equation of the underlying time dependent stochastic process Duits & Franken (2009, 2010a);

Mumford (1994) at time t > 0 we have

C(g) = λ2

∞∫
0

t∫
0

Gt−s(g
−1
1 g)e−λ(t−s)Gs(g

−1
2 g)e−λs dsdt .

This identity follows from two facts. Firstly, the resolvent Green’s function follows from the
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Figure B.1: Top: A contour completion process and the corresponding Green’s func-

tion (in SE(2)) and its planar θ-integrated version. Bottom: A contour enhancement

process and the corresponding Green’s function (in SE(2)) and its planar θ-integrated

version. In the completion process one has randomness in θ with variance 2D11 > 0 and

non-random advection in spatial eξ-direction (Eq. (7.1)). In the enhancement process

one has randomness both in θ-direction (with variance 2D11 > 0) and in eξ-direction

(with variance 2D22 > 0).
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time dependent Green’s function via the Laplace transform:

Rλ(g) = λL(t 7→ Gt(g))(λ) = λ

∫ ∞
0

Gt(g)e−λtdt.

Secondly, a temporal convolution relates to a product in the Laplace domain. As Brownian

bridge measures concentrate on geodesics when λ → 0, cf. Wittich (2005),(Duits & Franken,

2007, App.B), the completion field for contour enhancement concentrates on sub-Riemannian

geodesics within M , which we studied in Ch. 8.

On the other hand, in his paper Mumford (1994) Mumford showed that the modes of the

direction process (also known as the contour completion process) coincide with elastica curves

which are the solutions to the following optimal control problem

inf
x ∈ C1[0, `], ` > 0

(x(0), ẋ(0)) = g0,

(x(l), ẋ(`)) = g1

`∫
0

κ2(s) + ξ2 ds (B.6)

Similar to the Onsager-Machlup approach to optimal paths Takahashi & Watanabe (1980) he

obtains these modes by looking at the most probable/likely realization of discretized versions

of the direction process.

As this cannot be (efficiently) realized in practice, one needs a more tangible description

of the mode. To this end, we will call solution curves of (B.2) the “modes”. In case of the

direction process and in case one uses the completion distribution (Eq. (B.5)) for the function

C(g), the solution curves of (B.2) indeed seem to numerically coincide with the elastica curves.

Remarkably, this holds exactly for the corresponding Heisenberg approximations as we will

explain next.

B.1.3 In the Heisenberg Approximation of Completion

Fields our Approach Produces B-splines

The Heisenberg group approximation (obtained by contraction Duits & Franken (2010a)) of

the Green’s functions and induced completion field arises by replacing the moving frame of

left-invariant vector fields

{cos θ∂x+ sin θ∂y,− sin θ∂x + cos θ∂y, ∂θ}

on SE(2) by the moving frame of reference of left-invariant vector fields on the Heisenberg

group

{∂x + θ∂y, ∂y, ∂θ}

and by replacing spatial arc-length parametrization via s by spatial coordinate x. Intuitively,

such replacement boils down to replacing the space of positions and orientations by the space

of positions and velocities.
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When contracting (for details on this contraction see (Duits & Franken, 2010a, Ch.5.4))

our fundamental equation (B.2) with cost C given by Eq. (B.5) towards the Heisenberg group

H3 we obtain
d

dy
C̃(x, y, θ) =

d

dθ
C̃(x, y, θ) = 0, (B.7)

where again in the Heisenberg group each tangent plane {∂θ, ∂y} is orthogonal to the propaga-

tion direction ∂x + θ∂y and where the completion field is the product of two resolvent Green’s

functions

C̃(x, y, θ) = Rλ(x, y, θ)Rλ(−x+ x1, y − y1 − θ1(x− x1),−θ)

which can be derived in exact form as

Rλ(x, y, θ) =
λ
√

3

2D11πx2
e−λxe

− 3(xθ−2y)2+x2θ2

4x3D11 u(x),

where D11 > 0 stands for the amount of diffusion in θ-direction and u for the unit step function,

for details1 see (cf. (Duits & Van Almsick, 2008, Thm 4.6)).

Interestingly, the solution of (B.7) is a third order polynomial y(x) naturally lifted to (the

corresponding sub-Riemannian manifold within) H(3) by setting θ(x) = y′(x). The solutions of

Eq. (B.7) are therefore cubic B-splines which are the solutions of the Euler-Lagrange equation

y(4)(x) = θ(3)(x) = 0

of a curve optimization problem which arises by contracting (B.6) towards the Heisenberg group.

This gives the following “Heisenberg group equivalent” of control problem (B.6):

min

γ(·) = (·, y(·), θ(·)) ∈ C1(H3),

γ(0) = (0, 0, 0),

γ(x2) = (x2, y2, θ2),

θ(x) = y′(x),

x2∫
0

ξ2 + |θ′(x)|2 dx = ξ2x2 +
4(3y22+3x2y2θ2+x2

2θ
2
2)

x3
2

,

which takes the minimum along a lifted cubic-B spline (x, y(x), y′(x)) (with y(x) a third order

polynomial matching the boundary conditions). For details see (Duits & Van Almsick, 2008,

Eq. (4.6.2)), (Duits & Franken, 2007, ch:9.1.1), and van Almsick (2007). See Fig. B.2.

B.1.4 Concluding Remarks

By the results of the previous section the conjecture rises whether elastica curves coincide with

Eq. (B.5) as such a relation holds for their counterparts in the Heisenberg group. Numeric

computations seem to provide a confirmation of this conjecture, see Fig. B.3.

On the one hand, we expect with respect to the contour enhancement process that our

approach produces the sub-Riemannian geodesics (based on the results in Duits & Franken

1Set κ0 = κ1 = 0 in Duits & Van Almsick (2008).
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Figure B.2: The intersection of the planes {(x, y, θ) ∈ R3 | ∂θC̃(x, y, θ) = 0}
and {(x, y, θ) ∈ R3 | ∂yC̃(x, y, θ) = 0} of the Heisenberg approximation C̃(g) of the

completion field C(g) given by Eq. (B.5), produces a cubic B-spline lifted in H(3),

i.e. (x, y(x), θ(x) = y′(x)) with y(4)(x) = 0. Boundary conditions have been set to

x1 = y1 = 0, θ1 = 0.4, x2 = 2, y2 = 0, θ2 = −0.4, D11 = 1/8.

(2007, 2010b); Wittich (2005)), but this is a point for future investigation. On the other hand,

the conjecture together with the result in Mumford (1994) (and the result that B-splines solve

Eq. (B.7)) would underpin our alternative applicable definition of modes as solution curves of

Eq. (B.2).

In fact this means that optimization in each (η, θ)-plane V, as is done in our ETOS al-

gorithm, produces the most probable curves (in the sense of Mumford (1994); Takahashi &

Watanabe (1980)) in direction processes.
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Figure B.3: The intersection of the planes {g ∈ SE(2) | A3C(g) = 0} (depicted in

red) and {g ∈ SE(2) | A2C(g) = 0} (depicted in yellow) of the exact completion field

g = (x, y, θ) 7→ C(g) given by Eq. (B.5), with x1 = y1 = θ1 = 0 and x2 = 3, y2 = −1,

θ2 = 7/4π λ = 0.1, D11 = 1/32. The intersection of these planes seems to coincides

with an elastica (with ξ2 = 4λD11), which we plotted in dashed red in the top figure and

by white balls in the bottom figures.
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Appendix C

Vessel Tracking Part II:

Sub-Riemannian Geodesics in

SE(2)

This appendix is based on joint work with Remco Duits, Alexey Mashtakov and Gonzalo San-

guinetti, cf. Bekkers et al. (2015c), and provides: (1) additional theoretical details on our

method for computing data-adaptive sub-Riemannian geodesics as described in Ch. 8; and (2)

formal proofs of the main theorems Thm. 2 and Thm. 3. These theoretical results are in par-

ticular due to the efforts of Remco Duits and Alexey Mashtakov, for which they are gratefully

acknowledged.

C.1 Application of Pontryagin’s Maximum Prin-

ciple

Here we study the optimal control problem (8.2), recall also Remark 10, and we apply Pon-

tryagin’s Maximum Principle (PMP) to the action functional J of Eq. (8.3) with fixed total

time T > 0. Since [Ai,Aj ] =
∑3
k=1 c

k
ijAk, with non-zero coefficients c213 = −c231 = −1,

c123 = −c132 = −1, we have [∆,∆] = T (SE(2)) and we only need to consider normal trajecto-

ries. Then the control dependent Hamiltonian of PMP expressed via left-invariant Hamiltonians

hi(p, g) = 〈p,Ai(g)〉, i = 1, 2, 3, with momentum p ∈ T ∗g (SE(2)), and g = (x, y, θ) ∈ R2 o S1

reads as

Hu(p, g) = u1h1(p, g) + u3h3(p, g)− 1

2
C2(g)

(
β2|u1|2 + |u3|2

)
.

Optimization over all controls produces the (maximized) Hamiltonian

Hfixed(g, p) =
1

2 C2(g)

(
h2

1

β2
+ h2

3

)
,
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and gives the expression for extremal controls u1(t) = h1(t)
C2(γ(t))β2 , u3(t) = h3(t)

C2(γ(t)) . Using

SR-arclength parametrization Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = 1 implies Hfixed = 1
2 along extremal tra-

jectories. We have the Poisson brackets

{H,h1} = A1C
C + h3h2

C2 , {H,h2} = A2C
C −

h3h1

C2 , {H,h3} = A3C
C −

h1h2

β2C2 , (C.1)

where H = Hfixed and with {F,G} =
3∑
i=1

∂F
∂hi
AiG − ∂G

∂hi
AiF . By Eq. (C.1), by {hi, hj} =

Aihj −Ajhi =
3∑
k=1

ckijhk, and by ḣi = {H,hi}, PMP gives us:

p(·) =
3∑
i=1

hi(·) ωi
∣∣
γ(·) and


ḣ1 = 1

C(γ(·)) A1|γ(·) C + h3h2

C2(γ(·)) ,

ḣ2 = 1
C(γ(·)) A2|γ(·) C −

h3h1

C2(γ(·)) ,

ḣ3 = 1
C(γ(·)) A3|γ(·) C −

h1h2

β2C2(γ(·)) ,

(C.2)

— vertical part (for adjoint variables),

γ̇(·) =
∑

i∈{1,3}

ui(·) Ai|γ(·) and


ẋ = h1

C2(γ(·))β2 cos θ,

ẏ = h1

C2(γ(·))β2 sin θ,

θ̇ = h3

C2(γ(·)) ,

(C.3)

— horizontal part (for state variables).

with dual basis {ωi} for T ∗(SE(2)) defined by 〈ωi,Aj〉 = δij .

For a consistency check, we also apply the PMP-technique directly to Problem (8.2) with

free terminal time T , where typically (cf. Agrachev & Sachkov (2013)) the Hamiltonian van-

ishes. Then, using SR arclength parameter t, the control dependent Hamiltonian of PMP

equals

Hu(g, p) = u1h1(p, g) + u3h3(p, g)− C(g)
√
β2|u1|2 + |u3|2.

Optimization over all controls under SR arclength parametrization constraint

C
√
β2|u1|2 + |u3|2 = 1 produces via Euler-Lagrange optimization w.r.t. (u1, u3) (via unit La-

grange multiplier) the (maximized) Hamiltonian:

Hfree(g, p) = 1
C(g)

√
|h1|2
β2 + |h3|2 − 1 = 0 with p =

3∑
i=1

hiω
i, (C.4)

and by straightforward computations one can verify that both the horizontal part and the

vertical part of PMP (but now applied to Hfree) is exactly the same as (C.3) and (C.2).

Remark 21. The two approaches produce the same curves and equations, but their Hamilto-

nians are different. Nevertheless, we have Hfree = 0⇔ Hfixed = 1
2 .

C.2 Lemmas Applied in the Proof of Theorem 2

In this section we consider preliminaries and lemmas needed for Thm. 2. Before we can make

statements on SR-spheres we need to explain the notion of geodesically equidistant surfaces,
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and their connection to HJB-equations. In fact, propagation of geodesically equidistant surfaces

in (SE(2),∆,Gξ,C0 ) is described by a HJB-system on this SR-manifold.

Recall Remark 10. Also recall, that in Appendix C.1 we have applied PMP to this

problem yielding constant Hamiltonian Hfixed = 1
2C2 (β−2h2

1 + h2
3) = 1

2 relating to Hfree =
1
C

√
β−2h2

1 + h2
3 − 1 = 0 via Hfree =

√
2Hfixed − 1.

In our analysis of geodesically equidistant surface propagation we first resort to the non-

homogenous viewpoint on the Lagrangian and Hamiltonian (with fixed time), and then obtain

the results on the actual homogeneous problem (with free time) via a limiting procedure.

Definition 4. Given V : SE(2) × R+ → R continuous. Given a Lagrangian L(γ(r), γ̇(r)) on

the SR manifold (SE(2),∆,Gξ,C0 ), with L(γ, ·) : ∆→ R+ convex. Then the family of surfaces

Sr := {g ∈ SE(2) | V (g, r) = W0(r)}, with (C.5)

W0 : R → R monotonic, smooth, is geodesically equidistant if L(γ(r), γ̇(r)) = W ′0(r) for a SR

geodesic γ in (SE(2),∆,Gξ,C0 ).

Remark 22. The motivation for this definition is

d

dR

R∫
0

L(γ(r), γ̇(r)) dr = L(γ(R), γ̇(R)) =
dW0

dr
(R).

Lemma 1. Let L be non-homogeneous and lim
|v|→∞

L(·,v)
|v| = ∞. Then the family of surfaces

{Sr}r∈R is geodesically equidistant if and only if V satisfies the HJB-equation (where r may be

monotonically re-parameterized):

∂V
∂r (g, r) = −H(g,dSRV (g, r)), with dSRV (g, r) = P∗∆dV (g, r) =

∑
i∈{1,3}

AiV (g, r) ωi
∣∣
g
.

(C.6)

Here P∗∆(p) =
∑

i∈{1,3}
hi ω

i, for all p =
3∑
i=1

hi ω
i, is a dual projection expressed in dual basis ωi

given by 〈ωi,Aj〉 = δij, and Hamiltonian H(g, p) = max
v∈Tg(SE(2))

{〈p, v〉 − L(g, v)}.

Proof Substitute an arbitrary transversal minimizer γ(r) into V (·, r) and take the total deriva-

tive w.r.t. r:
d

dr
V (γ(r), r) =

∂

∂r
V (γ(r), r) + 〈dV |γ(r) , γ̇(r)〉.

Now γ(r) on Sr, with tangent γ̇(r) =
∑
i∈{1,3} u

i(r) Ai|γ(r), and thereby

d

dr
V (γ(r), r) = L(γ(r), γ̇(r)) =

∂

∂r
V (γ(r), r) +

2∑
i=1

ui(r) Ai|γ(r) V (γ(r), r).
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As a result we have

−L(γ(r), γ̇(r)) +
∑

i∈{1,3}
ui(r) Ai|γ(r) V (γ(r), r) = −∂V

∂r (γ(r), r)
(1)⇔

sup
(u1(r),u3(r))∈R2

∑
i∈{1.3}

ui(r)hi(r)− L(γ(r), γ̇(r)) = −∂V
∂r (γ(r), r)

(2)⇔

H(γ(r),P∗∆dV (γ(r), r)) = −∂V
∂r (γ(r), r),

(C.7)

with components hi(r) = Ai|γ(r) V (γ(r), r) of projected momentum covector

P∗∆ p(r) =
∑

i∈{1,3}

hi(r) ω
i
∣∣
γ(r)

= P∗∆dV (γ(r), r).

Now every point g ∈ Sr is part of a transversal minimizing curve γ(r) and the result follows.

So the “⇒” is proven. Conversely, if the HJB-equation is satisfied it follows by the same

computations (in reverse order) that L(γ(r), γ̇(r)) = d
drV (γ(r), r), which equals W ′0(r). �

Remark 23. In PMP Agrachev & Sachkov (2013) (see also Appendix C.1) the controls are

optimized to obtain the Hamiltonian H from the control dependent Hamiltonian Hu. The first

equivalence in (C.7) is due to the maximum condition of PMP. The second equivalence in (C.7),

is by definition of the Hamiltonian, where by the convexity assumption of the Lagrangian the

supremum is actually a maximum (Evans, 1997, ch:8).

Next we apply the limiting procedure to obtain HJB-equations for geodesically equidistant

surfaces in the actual homogeneous case of interest. The actual homogeneous Lagrangian case

with T -free can be obtained as a limit (1 ≤ η →∞) from non-homogeneous Lagrangian cases:

Lη(γ(t), γ̇(t)) =
2η − 1

2η

(
Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t))

) η
2η−1

, (C.8)

and corresponding Hamiltonian (see Remark 25 below) equals

Hη(γ(t), p(t)) =
1

2η

(
β−2h2

1 + h2
3

)η |C(γ(t))|−2η, (C.9)

and setting r = t = W0(t). Thus ∂V
∂r (γ(r), r) = ∂V

∂t (γ(t), t) = W ′0(t) = L(γ(t), γ̇(t)) =√
Gξ,C0

∣∣∣
γ(t)

(γ̇(t), γ̇(t)) = 1 in Eq. (C.7). Next we replace V by W to distinguish between

the homogeneous and the non-homogeneous case).

Lemma 2. The family of surfaces given by Eq. (C.5) is geodesically equidistant w.r.t. the

homogeneous Lagrangian L∞(γ, γ̇) =

√
Gξ,C0

∣∣∣
γ

(γ̇, γ̇), with r = t = W0(t), iff W satisfies the

HJB-equation
1

C
√
β−2|A1W |2 + |A3W |2 = 1⇔ H = 0 (C.10)

where H = lim
η→∞

Hη = Hfree the vanishing free-time Hamiltonian in Appendix C.1. Defining

Hamiltonian H̃ by

H̃(g, p) := C−1(g)
√
β−2h2

1 + h2
3 (C.11)

puts Eq. (C.10) in eikonal form H̃(g,dSRW (g, t)) = 1.
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Proof Tangential to the proof of Lemma 1. For 1 ≤ η < ∞ we can apply Lemma 1 to

Lagrangian Lη given by (C.8) whose associated Hamiltion Hη is given by (C.9) due to PMP

(or just the Fenchel transform on R2). In the limiting case η → ∞, where the Lagrangian is

homogeneous and the Hamiltonian vanishes. Finally we note that now we have

∂W

∂r
(γ(r), r) =

∂W

∂t
(γ(t), t) = W ′0(t) = L(γ(t), γ̇(t)) = 1,

from which the result follows. �

Remark 24. The relation between the various Hamiltonians is

Hη→∞ = Hfree =
√

2Hfixed − 1 =
√

2Hη=1 − 1 = H̃ − 1 = 0.

Remark 25. The relation between the Lagrangian Lη given by (C.8) and the Hamiltonian (C.9)

is the (left-invariant, SR) Fenchel transform on SE(2). Due to left-invariance this Fenchel-

transform actually boils down to an ordinary Fenchel-transform on R2 when expressing velocity

and momentum in the left-invariant frame. Indeed we have

Hη(γ, p) = [FL(SE(2))∩∆(Lη(γ, ·))](p) :=

sup
(u1,u3)∈R2

{−2η − 1

2η
(C(γ))

2η
2η−1 (β2|u1|2 + |u3|2)

η
2η−1 + h1u

1 + h3u
3} (C.12)

with horizontal velocity v = u1A1 + u3A3, and momentum p =
∑3
i=1 hiω

i.

C.3 Viscosity Solutions for HJB-systems in SE(2)

Definition 5. The (Cauchy problem) for a HJB-equation (akin to (Evans, 1997, ch:10.1)) on

SE(2) is given by ∂W
∂t = −H(g,dSRW ) in SE(2)× (0, T ),

W (g, 0) = W0,
(C.13)

whereas a boundary value problem for HJB-equation is given as

H(g,dSRW ) = 0 on SE(2) \ {e}, W (e) = 0; (C.14)

where T > 0 is prescribed, W0 is a given function (or a cost measure Akian et al. (1994)),

H(g, p) = Hfree(g, p) is the free-time Hamiltonian given by (8.11), and dSRW =
∑

i∈{1,3}
AiW (g, t) ωi

∣∣
g
.

Remark 26. Combined Cauchy-Dirichlet problems exist Trélat (2006), but they are defined

on (analytic) open and bounded domains. Thereby they cannot be applied to our set of interest

SE(2) \ {e} as this would violate semigroup theory Akian et al. (1994); Burgeth & Weickert

(2005); Evans (1997); Yosida (1995). This is also clear in view of the Cramer transform Akian

et al. (1994), putting an isomorphism between HJB- and diffusion systems.
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Remark 27. In Eq.(C.14) it is crucial that the free time Hamiltonian is used. In the definition

of viscosity solutions of the Cauchy problem, Eq. (C.13), one can set both H = Hfree (as done

in Ch. 8) or H = Hfixed as done in Appendix C.2.

HJB-systems in general do not have unique solutions. To avoid multiple (non-desirable)

solutions, one must impose the viscosity condition Evans (1997); Lions (1982) commonly ap-

plied in wavefront methods acting directly in the image domain R2 Osher & Fedkiw (2006);

Sethian (1999). The viscosity solution is obtained by the vanishing viscosity method Lions

(1982). The idea of this method is to add to the HJB-equation a term ε∆ and to pass to the

limit, when ε goes to 0. Here ∆ denotes the Laplacian, that in our case (for C = 1) equals

∆SR =
∑
i∈{1,3}Ai(βi)−2Ai, with β1 = β, β3 = 1. Here the name “viscosity solutions” comes

from fluid dynamics, where typically the term ε∆ represents a physical viscosity. For an intu-

itive illustration of the geometric property of such solutions see (Bressan, 2010, fig.30). The

viscosity solution of the initial value problem can be defined alternatively as follows.

Definition 6. Let H(g, ·) be a convex Hamiltonian for all g ∈ SE(2) s.t. H(g, p) → ∞ if

p→∞. The function W : SE(2)× R→ R is viscosity solution of ∂W
∂t = −H(g,dSRW ) if it is

a weak solution1 such that for all functions V ∈ C1(SE(2)× R,R) one has

• W − V attains a local maximum at (g0, t0) ⇒
(
∂V
∂t +H(g,dSRV )

)∣∣
(g0,t0)

≤ 0,

• W − V attains a local minimum at (g0, t0) ⇒
(
∂V
∂t +H(g,dSRV )

)∣∣
(g0,t0)

≥ 0.

Similarly, the viscosity solution of the boundary value problem (that is equivalent to the

eikonal equation, when t is SR-arclength) can be defined as follows:

Definition 7. A solution W : SE(2)→ R of Eq. (C.14) is called a viscosity solution if for all

functions V ∈ C1(SE(2),R) one has

• W − V attains a local maximum at g0 ⇒ Hfree(g0,d
SRV )) ≤ 0,

• W − V attains a local minimum at g0 ⇒ Hfree(g0,d
SRV )) ≥ 0.

C.4 Proof of Theorem 3

The back-tracking (8.6) is a direct result of Lemma 2 in Appendix C.2 and PMP in Ap-

pendix C.1. According to these results one must set

u1(t) =
h1(t)

(C(γ(t)))2β2
=
A1W |γ(t)

(C(γ(t)))2β2
and u3(t) =

h3(t)

(C(γ(t)))2
=
A3W |γ(t)

(C(γ(t)))2

1By weak solution we mean a not necessarily differentiable Lipschitz function, satisfying

the equation almost everywhere (for further details see Evans (1997)).
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from which the result follows. Then we recall from Thm. 2 that St given by (8.5) are geodesically

equidistant surfaces propagating with unit speed from the origin. So St are candidates for sub-

Riemannian spheres, but it remains to be shown that the back-tracking (8.6) will neither pass a

Maxwell point nor a conjugate point, i.e. t ≤ tcut. Here tcut denotes cut time, where a geodesic

looses its optimality.

At Maxwell points g∗ induced by the 8 reflectional symmetries Moiseev & Sachkov (2010)

two distinct SR-geodesics meet with the same SR distance. As SR-geodesics in (SE(2),∆, G1)

are analytic Moiseev & Sachkov (2010), these two SR-geodesics do not coincide on an open set

around end-condition g∗, and the SR spheres are non-smooth at g∗. Regarding the set M, we

note that the Maxwell sets related to the i-th reflectional symmetry εi are defined by

MAXi = {(p0, t) ∈ T ∗e (SE(2))× R+ | H(p0) = 1
2 and Exp(p0, t) = Exp(εip0, t)},

maxi = Exp(MAXi), i = 1, . . . 8,

where we may discard the indices i = 3, 4, 6 as they are contained in {max1,max2, max5,max7}.
Now with m̃ax

i
we denote the Maxwell set with minimal positive Maxwell times over all sym-

metries (i.e. we include the constraint t ≤ min{timax} where the minimum is taken over all

positive Maxwell times along each trajectory), then we find M to be contained within the

union of the following sets1:

m̃ax
2 ⊂ {(x, y, θ) ∈ SE(2) | y sin θ/2 + x cos θ/2 = 0},

m̃ax
5

= {(x, y, θ) ∈ SE(2) | θ = π},

where (Moiseev & Sachkov, 2010, th:5.2) shows we must discard the first reflectional symmetry

ε1 as it does not produce Maxwell points. Now for generic geodesics (not passing the special

conjugate points that are limit points of Maxwell points and not Maxwell points themselves)

tcut = t1MAX , as proven in (Sachkov, 2010, th:3.3), where t1MAX > 0 denotes the first Maxwell

time associated to the 8 discrete reflectional symmetries.

During the back-tracking the set M is never reached at internal times (only when starting

at them, recall Remark 12), since they are “uphill” from all possible directions during dual

steepest descent tracking (8.6), as we will shown next. As a result we have t ≤ tcut = t1MAX .

Consider Fig. 8.4. At Maxwell points g∗ ∈M due to the reflectional symmetries there exist two

distinct directions in the 2D-horizontal part ∆g∗ of the tangent space Tg∗(SE(2)) where the

directional derivative is positive. If there would be a direction in the tangent space where the

directional derivative is negative then there would be a direction in ∆g∗ with zero directional

derivative of W (·) at g∗ towards the interior of the sphere yielding contradiction. Here we note

that due to the viscosity property of the HJB-solution, kinks at the Maxwell points are pointing

1In (Sachkov, 2011, Eq.3.13) it is shown that m̃ax
2

= {(x, y, θ) ∈ SE(2) | y sin θ/2 +

x cos θ/2 = 0 and | − x sin(θ/2) + y cos(θ/2)| > |R1
1(θ)|} with R1

1 defined in (Sachkov, 2011,

Lemma 2.5). We also observed such a loss of the Maxwell point property in our numerical

algorithm, as kinks in W (g) = t can disappear when moving on the set y sin θ/2+x cos θ/2 = 0.

See Figure 8.10.
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Figure C.1: Overview of Maxwell points. Two Maxwell points on the purple surface

x cos θ2+y sin θ
2 = 0 and two red Maxwell points on the surface |θ| = π (recall Figure 8.4).

In all cases we see that local kinks in the viscosity solutions are upward, and the back-

tracking algorithm can not pass these points.

upward (see Fig. 8.4 and Fig. C.1) in the backward minimization tracking process (Bressan,

2010, fig.30). Furthermore, we note that SR spheres St are continuous Sachkov (2011) and

compact, as they are the preimage St = d(·, e)←({t}) of compact set {t} under continuous

mapping d(·, e). Continuity of d(·, e) implies the spheres are equal to the 2D-boundaries of the

SR balls (w.r.t. the normal product topology on R2 × S1).

The algorithm also cannot pass conjugate points that are limits of 1st Maxwell points, but

not Maxwell points themselves. See Fig. 8.3. Such points exist on the surface R2 = 0 and are

by definition within M\M. Suppose the algorithm would pass such a point at a time t > 0

(e.g. there exist 4 such points on the sphere with radius 4, see Fig. 8.4) then due to the astroidal

shape of the wavefront at such a point, cf. (Sachkov, 2010, Fig.11), there is a close neighboring

tract that would pass a 1st Maxwell point which was already shown to be impossible (due to

the upward kink-property of viscosity solutions). �

Remark 28. The sub-Riemmannian spheres are non-smooth only at the 1st Maxwell set M.

They are smooth at the conjugate points in M\M (where the reflectional symmetry no longer

produce two curves/fronts). In the other points on St \ M the SR-spheres are locally smooth

(by the Cauchy-Kovalevskaya theorem and the semigroup property of the HJB-equations).

C.5 The Limiting Procedure (8.15) for the Sub-

Riemannian Eikonal Equation

In this section we study the limit procedure (8.15), illustrated in Figure 8.5. To this end we

first provide a formal representation of the viscosity solutions of system (8.12), where we rely on

viscosity solutions of morphological scale spaces obtained by super-position over the (min,+)

algebra, i.e. obtained by morphological convolution (erosions) with the morphological impulse

308



C.5 The Limiting Procedure (8.15) for the Sub-Riemannian Eikonal
Equation

response, cf.Burgeth & Weickert (2005). Now as the HJB-equations of such morphological scale

spaces do not involve a global offset by 1 in the right-hand side of the PDE we need to combine

such erosions with a time shift in order to take into account the global offset. It turns out that

the combination of these techniques provide staircases with steps of size ε, so that we obtain

the appropriate limit by taking the limit ε→ 0 afterwards as is done in (8.15).

Morphological convolutions over the SE(2) group are obtained by replacing in linear left-

invariant convolutions, the usual (+, ·)-algebra by the (min,+)-algebra. Such erosions on SE(2)

are given by

(k 	 f)(g) := inf
h∈SE(2)

{k(h−1g) + f(h)}. (C.15)

Furthermore, to include the updating of the initial condition in (8.12) we define

W̃ (g) :=

{
W (g) if g 6= e

0 if g = e.
(C.16)

Lemma 3. Let ε > 0, n ∈ N. The viscosity solution of (8.12) is given by

W ε
n+1(g, r) = (kr−nε 	 W̃ ε

n)(g) + (r − nε), (C.17)

for r ∈ [rn, rn+1] = [nε, (n+ 1)ε] and morphological kernel kv(g), v ≥ 0, given by

kv(g) =

{
0 if d(g, e) ≤ v,
∞ else,

where d(g, e) denotes the Carnot-Caratheodory distance (8.7) between g ∈ SE(2) and e =

(0, 0, 0). For n = 0 we have that the viscosity solution of (8.13) is given by W ε
1 (g, r) = kr(g)+r.

Proof In order to care of the constant off-set in the HJB-equatons of (8.12) and (8.13),

we set r = rnew + rn and we define for n = 0, 1, 2, . . . the functions V εn+1 : SE(2) × [0, ε] → R
by

V εn+1(g, rnew) := W ε
n+1(g, rnew + rn)− rnew,

with rnew ∈ [0, ε] and V εn+1 the viscosity solution of
∂V εn+1

∂rnew
(g, rnew) = −1 + 1− H̃(g,dSRV εn+1(g, rnew)) = −H̃(g,dSRV εn+1(g, rnew)),

for g 6= e we have V εn+1(g, 0) =

{
∞ if n = 0,

W ε
n(g, rn) if n ∈ N

for g = e we have V εn+1(g, 0) = V εn+1(e, 0) = 0.

where we use short notation for the sub-Riemannian derivative dSRV :=
∑2
i=1AiV ωi, recall

(8.10) in Remark 11, and where Hamiltonian H̃ is given by (C.11).

Now let us first consider the case n = 0. By the results in Appendix C.2 the Hamiltonian

system (8.13) provides geodesically equidistant wavefront propagation traveling with unit speed

and departing directly from the unity element. As a result, we find

V ε1 (g, rnew) = krnew(g) =

{
0 if d(g, e) ≤ rnew
∞ else.
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and by left-invariant ‘superposition’ over the (min,+)-algebra we find for n = 1, 2, . . . that

V εn+1(g, rnew) = (krnew 	 W̃ ε
n(·, rn))(g), where we recall (C.16). Finally, we have

W ε
n+1(g, r) = V εn+1(g, r − nε) + r − nε = (kr−nε 	 W̃ ε

n(·, rn))(g) + r − nε.

Corollary 2. Let n ∈ N. Let ε > 0. The following identity holds

W ε
n+1(g, rn+1) = (kε 	 W̃ ε

n(·, rn))(g) + ε

=


n∑

m=0
(m+ 1)ε 1[rm,rm+1](d(g, e)) if d(g, e) ≤ rn+1 = (n+ 1)ε

∞ if d(g, e) > rn+1,

(C.18)

where 1[rm,rm+1] denotes the indicator function on set [rm, rm+1].

Proof The first part follows by Lemma 3 for r = rn+1 (i.e. rnew = ε). The second part

follows by induction. Recall from Lemma 3 that W ε
1 (g, r) = kr(g) + r. Now application of

(C.17) for n = 1 yields

W ε
2(g, r2) = (kε 	 W̃ ε

1(·, r1))(g) + ε = ε+ inf
h∈Bg,ε

{
kε(h) + ε if h 6= e

0 if h = e,
=

ε+


0 if d(g, e) ≤ ε
ε if ε < d(g, e) ≤ 2ε

∞ else

=


1∑

m=0
(m+ 1)ε 1[rm,rm+1](d(g, e)) if d(g, e) ≤ r2

∞ else,

(C.19)

with Bg,ε = {h ∈ SE(2) | d(g, h) ≤ ε}. This can intuitively be seen from the geometric

meaning of an erosion W̃ ε
1 7→ kε 	 W̃ ε

1 where one drops cylinders from below on the graph of

W̃ ε
1 (·, rn) and considering the new hull where cilinders get stuck. Eq. (C.19) can also be seen

directly from the definition of kε. Let us verify each case separately:

• If d(g, e) > 2ε we have that the value must be infinite, since suppose it were finite then

by the definition of the morphological kernel kε we would need to have that d(g, e) ≤
d(g, h) + d(h, e) ≤ 2ε yielding contradiction.

• If d(g, e) ≤ ε, then in the erosion-minimization we can take h = e and we obtain ε+ 0.

• If ε < d(g, e) ≤ 2ε, then in the erosion-minimization we cannot take h = e, but for

allowed choices we obtain kε(e) = 0 and ε+ ε as output.

Similarly we have by inserting induction hypothesis for n and recursion (C.17) we have

W ε
n+2(g, rn+2) = (kε 	 W̃ ε

n+1(·, rn+1))(g) + ε = ε+
n+1∑
m=0

(m+ 1)ε 1[rm+1,rm+2](d(g, e))

= ε+
n+2∑
m′=1

m′ε 1[rm′ ,rm′+1](d(g, e)) =
n+1∑
m′=0

(m′ + 1)ε 1[rm′ ,rm′+1](d(g, e)),

for d(g, e) ≤ rn+2. Here we applied m′ = m+ 1 so that the result follows for n+ 1. �
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Theorem 9. Let g ∈ SE(2) be given. We have the following limit

lim
ε→0

lim
n→∞

W ε
n+1(g, (n+ 1)ε) = d(g, e).

Proof Application of Corollary 2 gives

lim
n→∞

W ε
n+1(g, (n+ 1)ε) =

∞∑
k=0

(k + 1)ε 1[rk,rk+1](d(g, e))

=
N∗(g,ε)∑
k=0

(k + 1)ε 1[rk,rk+1](d(g, e)),

with N∗(g, ε) = dd(g,e)
ε e, i.e. the smallest integer ≥ d(g,e)

ε ∈ R+. As a result we have

lim
ε↓0

lim
n→∞

W ε
n+1(g, rn+1) = lim

ε↓0
W ε
N∗(g,ε)+1(g, (n+ 1)ε)

= lim
ε↓0

N∗(g,ε)∑
k=0

(k + 1)ε 1[rk,rk+1](d(g, e)) = d(g, e)

where the size of the steps in the staircase towards d(g, e) vanishes as ε→ 0. Recall Figure 8.5.

C.6 Embedding into Geometric Control Theory

As mentioned in Remark 7 the problem PCmec(SE(2)) given by (8.2) actually comes from a

mechanical problem in geometric control, where a so-called Reeds-Shepp car Reeds & Shepp

(1990) can proceed both forward and backward in the path-optimization. As pointed out

in Boscain et al. (2010) such a problem, for certain end conditions, cannot be considered as a

curve optimization problem on the plane. The underlying difficulty is that for certain boundary

conditions, the smooth minimizers of problem PCmec(SE(2)) have the property that their spatial

projections exhibit a cusp and cannot be parameterized by spatial arc-length, since the control

variable u1 switches sign at the cusp. See Figure C.2.

In 2D image analysis applications solutions without cusps may be required. In this ap-

pendix, we propose problem PCcontour(SE(2)) as a modification of problem PCmec(SE(2)), which

considers only the end conditions such that cusps do not occur.

Let us denote x = (x, y) ∈ R2, then for g = (x, θ) ∈ R ⊂ SE(2) and C = 1 the following

problem on the spatial plane is well-posed:

PCcurve(R2) :



γ(0) = 0, γ(L) = x,

γ̇(0) = (1, 0)T , γ̇(L) = (cos θ, sin θ)T ,

l(γ(·)) =
L∫
0

C(γ(s))
√
β2 + κ2(s) ds→ min,

γ : [0, L]→ R2, β > 0,

(C.20)

where L denotes spatial length and κ curvature of the curve γ ∈ C∞([0, L],R2), and where

R ⊂ SE(2) denotes the set of allowable end-conditions. In Duits et al. (2013c) this set is
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explicitly determined, and partially depicted in Figure C.2C. In Ch. 8 we studied PCmec(SE(2))

(and not (C.20)), and we look both forward and backward. Then, to avoid cusps we must

consider the problem:

PCcontour(SE(2)) :



γ̇(t) = u1(t) A1|γ(t) + u3(t) A3|γ(t) , for t ∈ [0, T ]

γ(0) = e, γ(T ) = g = (x, θ) ∈ RC ,

l(γ(·)) =
T∫
0

C(γ(t))
√
β2|u1(t)|2 + |u3(t)|2 dt→ min,

with curve γ : [0, T ]→ SE(2), with controls:

(u1(t), u3(t)) ∈ R2, and u1(t) does not change sign,

(C.21)

where RC is the set of all g ∈ SE(2) such that the minimizing SR-geodesic(s) γ(·) = (x(·), θ(·))
do not exhibit a cusp in their spatial projections x(·). We distinguish between 3 cases for the

end-condition g (see Figure C.2):

• If g is chosen such that the optimal control u1 ≥ 0 then the lift of problem PCcurve(R2)

coincides with PCmec(SE(2)) and also with PCcontour(SE(2)).

• If g is chosen such that the optimal control u1 ≤ 0 then problem PCmec(SE(2)) and

problem PCcontour(SE(2)) coincide.

• If g is chosen such that the optimal control u1(t) switches sign at some internal time

t ∈ (0, T ), then g ∈ SE(2)\RC and the spatial projection of the corresponding minimizing

SR-geodesic(s) has an internal cusp, which we consider not desirable in our applications

of interest.

Remark 29. Geodesics in PCcontour(SE(2)) can depart forward or backward from the origin.

Then, for C = 1, the set RC=1 of allowable end-conditions can be obtained from the set R ⊂
{(x, y, θ) ∈ SE(2) | x ≥ 0} by a reflectional symmetry:

RC=1 = R ∪Q with Q = {(x, y, θ) ∈ SE(2) | (−x, y,−θ) ∈ R}. (C.22)

Remark 30. In Section 8.7.1 we provided a very simple numerical tool to compute the surface

in SE(2) where cusps appear also for C 6= 1, recall Eq. (8.21). This surface is a boundary of a

volume in SE(2) that contains the set RC.
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A B C 

Figure C.2: 3 Sub-Riemannian geodesics for uniform cost C = 1 to reveal the dif-

ferences of the 3 geometric control problems (8.2), (C.20) and (C.21), for β = 1.

A: plots of spatial projections of sub-Riemannian geodesics in R2, B: SR-geodesics in

SE(2), C: A part of R (the set of end-conditions for which Pcurve(R2) is well-defined

Duits et al. (2013c)) depicted as reachable cones around the origin. End condition

g1 = (x1, y1, θ1) ∈ R yields the minimizing curve of Pcontour, Pmec and Pcurve. End

condition g2 = (−x1, y1,−θ1) yields the minimizing curve in Pcontour, Pmec, and it

is invalid for Pcurve. End condition g3 is invalid for both Pcurve and Pcontour, as it

induces an internal cusp. For C = 1 the set of allowable end conditions for Pcontour

equals RC=1 = R∪Q, recall (C.22). For C 6= 1 this set RC differs, and can be computed,

cf. Remark 30.
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Péchaud, M., Descoteaux, M. & Keriven, R. (2009a). Brain connectivity using geodesics

in HARDI. In Medical Image Computing and Computer-Assisted Intervention–MICCAI

2009 , 482–489, Springer. 65, 208

330

http://ccnbook.colorado.edu
http://ccnbook.colorado.edu


REFERENCES
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de l’IHP Analyse non linéaire, vol. 23, 363–387. 184, 305

Tsitsiklis, J.N. (1995). Efficient algorithms for globally optimal trajectories. Automatic Con-

trol, IEEE Transactions on, 40, 1528–1538. 65

Tuomilehto, J., Lindstrm, J., Eriksson, J.G., Valle, T.T., Hmlinen, H., Ilanne-

Parikka, P., Keinnen-Kiukaanniemi, S., Laakso, M., Louheranta, A., Rastas, M.,

Salminen, V., Aunola, S., Cepaitis, Z., Moltchanov, V., Hakumki, M., Mannelin,

M., Martikkala, V., Sundvall, J. & Uusitupa, M. (2001). Prevention of type 2 diabetes

mellitus by changes in lifestyle among subjects with impaired glucose tolerance. New England

Journal of Medicine, 344, 1343–1350, pMID: 11333990. 8

Tuzel, O., Porikli, F. & Meer, P. (2008). Learning on Lie groups for invariant detection

and tracking. In CVPR, 1–8, IEEE. 99

334



REFERENCES

Unser, M. (1999). Splines: A perfect fit for signal and image processing. Signal Processing

Magazine, 16, 22–38. 98

Unser, M., Aldroubi, A., Eden, M. & Fellow, L. (1993). B-spline signal processing:

Part I-theory. IEEE Trans. Signal Processing , 41, 821–833. 98, 113

Valenti, R. & Gevers, T. (2012). Accurate eye center location through invariant isocentric

patterns. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 34, 1785–1798.

131

van Almsick, M.A. (2007). Context models of lines and contours. Ph.D. thesis, Eindhoven

University of Technology, Department of Biomedical Engineering, the Netherlands. 298

van Ginkel, M. (2002). Image Analysis using Orientation Space based on Steerable Filters.

Ph.D. thesis, Technical University Delft. 253

van Grinsven, M.J.J.P., Lechanteur, Y.T.E., van de Ven, J.P.H., van Ginneken,

B., Hoyng, C.B., Theelen, T. & Snchez, C.I. (2013). Automatic drusen quantification

and risk assessment of age-related macular degeneration on color fundus imagesautomatic

drusen quantification on color fundus images. Investigative Ophthalmology & Visual Science,

54, 3019. 125

Vazquez, S.G., Cancela, B., Barreira, N., Penedo, M.G. & Saez, M. (2010). On the

automatic computation of the arterio-venous ratio in retinal images: Using minimal paths

for the artery/vein classification. In IEEE DICTA, 599–604. 69, 243, 247

Vidal, R., Ma, Y. & Sastry, S. (2005). Generalized principal component analysis (GPCA).

Pattern Analysis and Machine Intelligence, IEEE Transactions on, 27, 1945–1959. 99

Viola, P. & Jones, M. (2001). Rapid object detection using a boosted cascade of simple

features. In CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on,

vol. 1, I–511–I–518. 96

Scotland, G.S., McNamee, P., Philip, S., Fleming, A.D., Goatman, K.A., Prescott,

G.J., Fonseca, S., Sharp, P.F. & Olson, J. (2007). cost-effectiveness of implementing
automated grading within the national screening programme for diabetic retinopathy in
scotland. British Journal of Ophthalmology , 91, 1518–1523. 9

Wang, J.J. & Wong, T.Y. (2006). Genetic determinants of retinal vascular caliber additional

insights into hypertension pathogenesis. Hypertension, 47, 644–645. 9

Weickert, J. (1999). Coherence-enhancing diffusion of colour images. Image and Vision Com-

puting , 17, 201 – 212. 20

Weiler, D.L., Engelke, C.B., Moore, A.L. & Harrison, W.W. (2015). Arteriole tortu-

osity associated with diabetic retinopathy and cholesterol. Optometry & Vision Science, 92,

384–391. 13, 251, 262

335



REFERENCES

Wilkinson, C., III, F.L.F., Klein, R.E., Lee, P.P., Agardh, C.D., Davis, M., Dills,

D., Kampik, A., Pararajasegaram, R. & Verdaguer, J.T. (2003). Proposed inter-

national clinical diabetic retinopathy and diabetic macular edema disease severity scales.

Ophthalmology , 110, 1677 – 1682. 17, 53

Williams, M.A., McGowan, A.J., Cardwell, C.R., Cheung, C.Y., Craig, D., Pass-

more, P., Silvestri, G., Maxwell, A.P. & McKay, G.J. (2015). Retinal microvascular

network attenuation in alzheimer’s disease. Alzheimer’s & Dementia: Diagnosis, Assessment

& Disease Monitoring , 1, 229–235. 8

Wilson, C.M., Cocker, K.D., Moseley, M.J., Paterson, C., Clay, S.T., Schulen-

burg, W.E., Mills, M.D., Ells, A.L., Parker, K.H., Quinn, G.E. et al. (2008). Com-

puterized analysis of retinal vessel width and tortuosity in premature infants. Investigative

ophthalmology & visual science, 49, 3577–3585. 70, 250

Wittich, O. (2005). An explicit local uniform large deviation bound for brownian bridges.

Statistics and Probability Letters, 73, 51–56. 295, 297, 299

Wong, T.Y., Klein, R., Couper, D.J., Cooper, L.S., Shahar, E., Hubbard, L.D.,

Wofford, M.R. & Sharrett, A.R. (2001). Retinal microvascular abnormalities and in-

cident stroke: the atherosclerosis risk in communities study. The Lancet , 358, 1134–1140.

8

Wong, T.Y., Klein, R., Sharrett, A.R., Schmidt, M.I., Pankow, J.S., Couper, D.J.,

Klein, B.E., Hubbard, L.D., Duncan, B.B., Investigators, A. et al. (2002). Retinal

arteriolar narrowing and risk of diabetes mellitus in middle-aged persons. Jama, 287, 2528–

2533. 9

Wong, T.Y., Klein, R., Klein, B.E., Meuer, S.M. & Hubbard, L.D. (2003). Retinal

vessel diameters and their associations with age and blood pressure. Investigative ophthal-

mology & visual science, 44, 4644–4650. 9

Wong, T.Y., Duncan, B.B., Golden, S.H., Klein, R., Couper, D.J., Klein, B.E.,

Hubbard, L.D., Sharrett, A.R. & Schmidt, M.I. (2004). Associations between the

metabolic syndrome and retinal microvascular signs: the atherosclerosis risk in communities

study. Investigative ophthalmology & visual science, 45, 2949–2954. 13

Wong, T.Y., Shankar, A., Klein, R., Klein, B.E. & Hubbard, L.D. (2005). Retinal

arteriolar narrowing, hypertension, and subsequent risk of diabetes mellitus. Archives of

internal medicine, 165, 1060–1065. 9

Wong, T.Y., Islam, F.A., Klein, R., Klein, B.E., Cotch, M.F., Castro, C., Shar-

rett, A.R. & Shahar, E. (2006). Retinal vascular caliber, cardiovascular risk factors, and

inflammation: the multi-ethnic study of atherosclerosis (MESA). Investigative ophthalmology

& visual science, 47, 2341–2350. 13

336



REFERENCES

Wu, R., Cheung, C.Y.L., Saw, S.M., Mitchell, P., Aung, T. & Wong, T.Y. (2013).

Retinal vascular geometry and glaucoma: the singapore malay eye study. Ophthalmology ,

120, 77–83. 10, 12, 265

Xiang, D. & Wahba, G. (1996). A generalized approximate cross validation for smoothing

splines with non-Gaussian data. Statistica Sinica, 6, 675–692. 116

Xu, H., Caramanis, C. & Mannor, S. (2009). Robustness and regularization of support

vector machines. The Journal of Machine Learning Research, 10, 1485–1510. 98

Xu, X., Niemeijer, M., Song, Q., Sonka, M., Garvin, M.K., Reinhardt, J.M. &

Abramoff, M.D. (2011). Vessel boundary delineation on fundus images using graph-based

approach. IEEE Trans Med Imaging , 30, 1184–1191. 155, 167, 169, 170

Yau, J., Kawasaki, R., Islam, F., Shaw, J., Zimmet, P., Wang, J. & Wong, T. (2010).

Retinal fractal dimension is increased in persons with diabetes but not impaired glucose

metabolism: the australian diabetes, obesity and lifestyle (AusDiab) study. Diabetologia,

53, 2042–2045. 10

Yin, Y., Adel, M. & Bourennane, S. (2012). Retinal vessel segmentation using a proba-

bilistic tracking method. Pattern Recognition, 45, 1235 – 1244. 154

Yoo, J.C. & Han, T. (2009). Fast normalized cross-correlation. CSSP , 28, 819–843. 96

Yosida, K. (1995). Resolvent and spectrum. In Functional Analysis, vol. 123 of Classics in

Mathematics, 209–231, Springer Berlin Heidelberg. 109, 305

Youssif, A. et al. (2008). Optic disc detection from normalized digital fundus images by means

of a vessels’ direction matched filter. IEEE TMI , 27, 11–8. 121

Yu, H., Barriga, S., Agurto, C., Echegaray, S. et al. (2011). Fast localization of optic

disc and fovea in retinal images for eye disease screening. 57, 125, 130

Yu, H. et al. (2012). Fast localization and segmentation of optic disk in retinal images using

directional matched filtering and level sets. IEEE TITB , 16, 644–57. 56, 121, 123

Zamperini, A., Giachetti, A., Trucco, E. & Chin, K.S. (2012). Effective features

for artery-vein classification in digital fundus images. In Computer-Based Medical Systems

(CBMS), 2012 25th International Symposium on, 1–6, IEEE. 53

Zhang, J., Li, H., Nie, Q. & Cheng, L. (2014). A retinal vessel boundary tracking method

based on Bayesian theory and multi-scale line detection. Computerized Medical Imaging and

Graphics, 38, 517–525. 53

337



REFERENCES

Zhang, J., Dashtbozorg, B., Bekkers, E., Pluim, J., Duits, R. & ter Haar Romeny,

B. (2016a). Robust retinal vessel segmentation via locally adaptive derivative frames in

orientation scores. IEEE Transactions on Medical Imaging , PP, 2631–2644. 150, 196, 256

Zhang, J., Duits, R., Sanguinetti, G. & ter Haar Romeny, B.M. (2016b). Numerical

approaches for linear left-invariant diffusions on SE(2), their comparison to exact solutions,

and their applications in retinal imaging. Numerical Mathematics: Theory, Methods and

Applications, 9, 1–50. 98, 99, 108, 109, 110, 111, 113, 114

Zhou, L., Rzeszotarski, M.S., Singerman, L.J. & Chokreff, J.M. (1994). The detection

and quantification of retinopathy using digital angiograms. IEEE Trans Med Imaging , 13,

619–626. 167, 169

Zhu, P., Huang, F., Lin, F., Li, Q., Yuan, Y., Gao, Z. & Chen, F. (2014). The relation-

ship of retinal vessel diameters and fractal dimensions with blood pressure and cardiovascular

risk factors. PloS one, 9, e106551. 10, 12, 265

Zweck, J. & Williams, L.R. (2004). Euclidean group invariant computation of stochastic

completion fields using shiftable-twistable functions. Journal of Mathematical Imaging and

Vision, 21, 135–154. 295

338



Summary

Retinal Image Analysis using Sub-Riemannian
Geometry in SE(2)

Fundus photography is the process of acquiring images of the inside of the eye (the fundus)

via optical means, and allows for the non-invasive and direct imaging of the living tissue of

the retina. On retinal images, both the retina itself, and the retinal microvasculature can be

studied. As such, retinal image analysis is not limited to the study of eye diseases alone, but

more generally to any (systemic) disease with a vascular component.

Due to the low cost and non-invasive nature of fundus cameras, retinal imaging is often used

in large scale screening programs and clinical studies. Large scale screening programs typically

focus on the prevention of blindness via the detection of sight threatening retinal pathologies.

Large scale clinical studies on the other hand, do not focus on detection of diseases per se, but

rather focus on learning how vessel parameters are associated with (progression towards) certain

diseases. In both scenarios (screening and clinical studies) there is a demand for automatic,

reliable, robust and scalable image analysis tools as to be able to deal with large numbers of

images, and to be able to quantify observations on the retina and its vasculature. This thesis

is concerned with the development of such retinal image analysis tools.

The developed retinal image analysis tools rely on the processing of so-called invertible

orientation scores. These are 3D functions on the coupled space of positions and orientations,

and are obtained as lifts of 2D images using a continuous wavelet-like transform with anisotropic

wavelets. Due to the neat organization of image data on positions and orientations, orientation

scores are highly suited for the analysis of curvilinear structures (which are characterized by

local orientations). In the retinal image analysis applications, these line structures are the

blood vessels. As shown in this thesis, it is then beneficial to resort to processing of orientation

scores considering that the blood vessels play an important role in any retinal image analysis

application, whether they are considered as the main structure of interest (e.g., in clinical vessel

parameter studies), used as a reference structure in retinal tissue analysis (e.g., in pathology

detection), or as a structure whose specific pattern characterizes the location of key anatomical

landmarks like the fovea and the optic nerve head.

In order to design effective algorithms for processing of orientation scores, one should how-

ever not treat the domain of positions and orientations as a flat Euclidean domain, but instead
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recognize a curved geometry on the domain. To deal with this curved geometry the domain is

identified with Lie group SE(2), the group of planar roto-translations. Moreover, as orientation

scores are obtained as lifts of 2D images, the curves analyzed in orientation scores are also to

be considered as (natural) lifts of the lower dimensional planar curves. Such naturally lifted

curves have their tangent vectors restricted to a sub-space of the full tangent space at each

position and orientation. This gives rise to the notion of a sub-Riemannian geometry on SE(2),

where sub refers to the restriction of tangent vectors, and where the metric includes a relative

cost for spatial and angular motions. Thus, in the processing of orientation scores differential

geometrical tools from Lie group theory are used to deal with the curved geometry, and a sub-

Riemannian geometrical approach is necessary to deal with structures that naturally appear in

orientation scores. This approach enabled the development of the following applications, each

of which show state-of-the-art performance in extensive benchmark comparisons:

1. Anatomical landmark detection via template matching, and template optimization in

SE(2).

2. Crossing preserving vessel enhancement via left-invariant processing of orientation scores.

3. Vessel tracking and segmentation via local curve optimization.

4. Vessel tracking via globally optimal sub-Riemannian geodesic extraction in SE(2), where

we show clear benefits of our sub-Riemannian framework compared to the Riemannian

counterparts in the image/orientation scores.

5. Vessel geometry analysis and biomarker extraction by direct analysis of orientation

scores.

The main theoretical results include:

1. A new framework for the computation of globally optimal data-adaptive sub-Riemannian

geodesics in SE(2) via a PDE and Fast-Marching approach, including extensions to the

group SO(3) for spherical images, including validation to exact formulas for the uniform

cost case (no data-adaptivity), and including numerical techniques for the computation

of the Maxwell and cusp surface.

2. A new framework for template matching in SE(2), including a regularized regression

framework for the construction of templates using smoothing splines in the orientation

score domain. Here, also a relation is established between the regularization prior and

hypo-elliptic Brownian motions SE(2).
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